<u>Answer:</u> The mass defect for the formation of phosphorus-31 is 0.27399
<u>Explanation:</u>
Mass defect is defined as the difference in the mass of an isotope and its mass number.
The equation used to calculate mass defect follows:
![\Delta m=[(n_p\times m_p)+(n_n\times m_n)]-M](https://tex.z-dn.net/?f=%5CDelta%20m%3D%5B%28n_p%5Ctimes%20m_p%29%2B%28n_n%5Ctimes%20m_n%29%5D-M)
where,
= number of protons
= mass of one proton
= number of neutrons
= mass of one neutron
M = mass number of element
We are given:
An isotope of phosphorus which is 
Number of protons = atomic number = 15
Number of neutrons = Mass number - atomic number = 31 - 15 = 16
Mass of proton = 1.00728 amu
Mass of neutron = 1.00866 amu
Mass number of phosphorus = 30.973765 amu
Putting values in above equation, we get:
![\Delta m=[(15\times 1.00728)+(16\times 1.00866)]-30.973765\\\\\Delta m=0.27399](https://tex.z-dn.net/?f=%5CDelta%20m%3D%5B%2815%5Ctimes%201.00728%29%2B%2816%5Ctimes%201.00866%29%5D-30.973765%5C%5C%5C%5C%5CDelta%20m%3D0.27399)
Hence, the mass defect for the formation of phosphorus-31 is 0.27399
if your serious about this question then it is 5
The correct answer is: [C]:
___________________________________________________________
"<span>pressure and the number of gas molecules are directly related."
___________________________________________________________
<u>Note</u>: The conclusion was: "</span> as the pressure in a system increases, the number of gas molecules increases" — over the course of many trials.
This means that the "pressure" and the "number of gas molecules" are directly related.
Furthermore, this conclusion is consistent with the "ideal gas law" equation:
" PV = nRT " ;
____________________________________________________________
in which:
"P = Pressure" ;
"n = number of gas molecules" ;
___________________________________________________________
All other factors held equal, when "n" (the "number of gas molecules")
increases in value (on the "right-hand side" of the equation), the value for "P" (the "pressure" — on the "left-hand side" of the equation), increases.
___________________________________________________________
1) mass composition
N: 30.45%
O: 69.55%
-----------
100.00%
2) molar composition
Divide each element by its atomic mass
N: 30.45 / 14.00 = 2.175 mol
O: 69.55 / 16.00 = 4.346875
4) Find the smallest molar proportion
Divide both by the smaller number
N: 2.175 / 2.175 = 1
O: 4.346875 / 2.175 = 1.999 = 2
5) Empirical formula: NO2
6) mass of the empirical formula
14.00 + 2 * 16.00 = 46.00 g
7) Find the number of moles of the gas using the equation pV = nRT
=> n = pV / RT = (775/760) atm * 0.389 l / (0.0821 atm*l /K*mol * 273.15K)
=> n = 0.01769 moles
8) Find molar mass
molar mass = mass in grams / number of moles = 1.63 g / 0.01769 mol = 92.14 g / mol
9) Find how many times the mass of the empirical formula is contained in the molar mass
92.14 / 46.00 = 2.00
10) Multiply the subscripts of the empirical formula by the number found in the previous step
=> N2O4
Answer: N2O4