Should be an air tight seal
Answer:
Option B. Decreases
Explanation:
Coulomb's law states that:
F = Kq₁q₂ / r²
Where:
F => is the force of attraction between two charges
K => is the electrical constant.
q₁ and q₂ => are the two charges
r => is the distance apart.
From the formula:
F = Kq₁q₂ / r²
The force of attraction (F) is inversely proportional to the square of their separating distance (r).
This implies that as the distance between them increase, the force of attraction between the two charges will decrease and as the distance between two charges decrease, the force of attraction between them will increase.
Considering the question given above and the illustration given above, the force of attraction will decrease as their distance of separation increases.
Option B gives the right answer to the question.
Answer:
a) 3.37 x 
b) 6.42kg/
Explanation:
a) Firstly we would calculate the volume of the metal using it`s weight in air and water , after finding the weight we would find the density .
Weight of metal in air = 50N = mg implies the mass of metal is 5kg.
Now the difference of weight of the metal in air and water = upthrust acting on it = volume (metal) p (liquid) g = V (1000)(10) = 14N. So volume of metal piece = 14 x
. So density of metal = mass of metal / volume of metal = 5 / 14 x
= 3.37 x 
b) Water exerts a buoyant force to the metal which is 50−36 = 14N, which equals the weight of water displaced. The mass of water displaced is 14/10 = 1.4kg Since the density of water is 1kg/L, the volume displaced is 1.4L. Hence, we end up with 3.57kg/l. Moreover, the unknown liquid exerts a buoyant force of 9N. So the density of this liquid is 6.42kg/
Answer:
The answer is "
"
Explanation:
Z=2, so the equation is 
Calculate the value for E when:
n=2 and n=9
The energy is the difference in transformation, name the energy delta E Deduct these two energies
In this transition, the wavelength of the photon emitted is:


