1) Balanced chemical equation
H2SO4 + 2NaOH ---> Na2 SO4 + 2H2O
=> 1 mol H2SO4 : 2 moles NaOH
2) Convert 89.3 g of H2SO4 and 96.0 g of NaOH to moles
Molar mass of H2SO4 = 98.1 g/mol
Molar mass of NaOH = 40.0 g/mol
moles = mass in grams / molar mass
moles H2SO4 = 89.3 g / 98.1 g/mol = 0.910 mol
moles NaOH = 96.0 g / 40.0 g/mol = 2.40 mol
3) Theoretical molar ratio = 2 moles NaOH / 1 mol H2SO4
So, all the 0.91 mol of H2SO4 will be consumed along with 1.820 (2*0.91) moles of NaOH, and 0.580 moles (2.40 - 1.82) of NaOH will be left over by the chemical reaction.
4) Convert 0.580 moles NaOH to mass
0.580 moles * 40.0 g/mol = 23.2 g of NaOH will be left over
Ocean currents act much like a conveyor belt, transporting warm water and precipitation from the equator toward the poles and cold water from the poles back to the tropics. Thus, ocean currents regulate global climate, helping to counteract the uneven distribution of solar radiation reaching Earth's surface. I think its B
Answer:
Gravity
Gravity is the force by which a planet or other body draws objects toward its center. The force of gravity keeps all of the planets in orbit around the sun.
Explanation:
hope this helps
Answer:
The mass in grams of N₂O gas that can be dissolved is 0.18 g
Explanation:
The solubility of a gas is proportional to the partial pressure of that gas, over a determined solvent. That's what Henry's law states. We see the formula:
S = K . Pp
Where S is solubility and K is Henry's constant. This specific for each gas and each temperature, while Pp means partial pressure.
We replace data:
S = 0.025 M/atm . 0.69atm
S = 0.01725 M
This is the solubility of the gas, so now, we need to know what mass of gas is solubilized. We convert the moles, with the volume of water.
0.01725 mol/L . 0.235 L = 4.05×10⁻³ moles
Now, we determine the mass in grams: 4.05×10⁻³ mol . 28 g / 1mol =
0.1782 g
Which mathematical relationship allows calculation of the equilibrium constant of a reaction if you know the standard change in Gibbs Free Energy ΔG is related to Q by the equation ΔG=RTlnQK. If ΔG < 0, then K > Q, and the reaction must proceed to the right to reach equilibrium
<h3>What is
Gibbs Free Energy?</h3>
The maximum amount of work that may be accomplished by a thermodynamically closed system at constant temperature and pressure can be determined using the Gibbs free energy (also known as Gibbs energy; symbol: displaystyle G). Additionally, it offers a prerequisite for any processes like chemical reactions that might take place in such circumstances.
The maximum amount of non-expansion work that can be taken from a closed system (one that can interchange heat and work with its surroundings but not matter) at fixed temperature and pressure is known as the Gibbs free energy change, which is measured in joules in SI. This maximum is only possible with a fully reversible method.
To learn more about Gibbs Free Energy from the given link:
brainly.com/question/9179942
#SPJ4