When it comes to ecosystems, a mountain, a river, and a cloud have more in common than you might think. Abiotic factors have specific and important roles in nature because they help shape and define ecosystems.
Biotic and Abiotic Factors
An ecosystem is defined as any community of living and non-living things that work together. Ecosystems do not have clear boundaries, and it may be difficult to see where one ecosystem ends and another begins. In order to understand what makes each ecosystem unique, we need to look at the biotic and abiotic factors within them. Biotic factors are all of the living organisms within an ecosystem. These may be plants, animals, fungi, and any other living things. Abiotic factors are all of the non-living things in an ecosystem.
Both biotic and abiotic factors are related to each other in an ecosystem, and if one factor is changed or removed, it can affect the entire ecosystem. Abiotic factors are especially important because they directly affect how organisms survive.
Examples of Abiotic Factors
Abiotic factors come in all types and can vary among different ecosystems. For example, abiotic factors found in aquatic systems may be things like water depth, pH, sunlight, turbidity (amount of water cloudiness), salinity (salt concentration), available nutrients (nitrogen, phosphorous, etc.), and dissolved oxygen (amount of oxygen dissolved in the water). Abiotic variables found in terrestrial ecosystems can include things like rain, wind, temperature, altitude, soil, pollution, nutrients, pH, types of soil, and sunlight.
The boundaries of an individual abiotic factor can be just as unclear as the boundaries of an ecosystem. Climate is an abiotic factor - think about how many individual abiotic factors make up something as large as a climate. Natural disasters, such as earthquakes, volcanoes, and forest fires, are also abiotic factors. These types of abiotic factors certainly have drastic effects on the ecosystems they encounter.
A special type of abiotic factor is called a limiting factor. Limiting factors keep populations within an ecosystem at a certain level. They may also limit the types of organisms that inhabit that ecosystem. Food, shelter, water, and sunlight are just a few examples of limiting abiotic factors that limit the size of populations. In a desert environment, these resources are even scarcer, and only organisms that can tolerate such tough conditions survive there. In this way, the limiting factors are also limiting which organisms inhabit this ecosystem.
first find the atomic weight of CH3 which would be
atomic weight: 12.011 (3×1.008) = 36.32 g/mol
then find the moles in the given mass
36.32 ÷ 45.7 = 0.794
I HOPE I'M NOT WRONG I HAVENT DONE CHEM IN SO LONG
The correct answer is D) Dan's sister was correct because Dan's legs touched the car seats. That is an indicator of heat transfer by conduction.
Conduction only happens when a heated object touches a non-heated (or not as heated) object. Radiation did cause the car to become hot, but conduction caused Dan to get burned.
Hope this helps!! :D
Answer:
True
Explanation:
Atomic radius can be defined as a measure of the size (distance) of the atom of a chemical element such as hydrogen, oxygen, carbon, nitrogen etc, typically from the nucleus to the valence electrons. The atomic radius of a chemical element decreases across the periodic table, typically from alkali metals (group one elements such as hydrogen, lithium and sodium) to noble gases (group eight elements such as argon, helium and neon). Also, the atomic radius of a chemical element increases down each group of the periodic table, typically from top to bottom (column).
<em>Hence, the atomic radius of phosphorus is smaller than the atomic radius of magnesium. Basically, the atomic radius of phosphorus is 98 pm while the atomic radius of magnesium is 145 pm.</em>
Try this solution, all the details are described in the attached picture.