Your answer is "<span>surface of a sphere"
Hope this helps.</span>
The answer would be (A) Protons
Answer:
<h2>C. <u>
0.55 m/s towards the right</u></h2>
Explanation:
Using the conservation of law of momentum which states that the sum of momentum of bodies before collision is equal to the sum of the bodies after collision.
Momentum = Mass (M) * Velocity(V)
BEFORE COLLISION
Momentum of 0.25kg body moving at 1.0m/s = 0.25*1 = 0.25kgm/s
Momentum of 0.15kg body moving at 0.0m/s(body at rest) = 0kgm/s
AFTER COLLISION
Momentum of 0.25kg body moving at x m/s = 0.25* x= 0.25x kgm/s
<u>x is the final velocity of the 0.25kg ball</u>
Momentum of 0.15kg body moving at 0.75m/s(body at rest) =
0.15 * 0.75kgm/s = 0.1125 kgm/s
Using the law of conservation of momentum;
0.25+0 = 0.25x + 0.1125
0.25x = 0.25-0.1125
0.25x = 0.1375
x = 0.1375/0.25
x = 0.55m/s
Since the 0.15 kg ball moves off to the right after collision, the 0.25 kg ball will move at <u>0.55 m/s towards the right</u>
<u></u>
Correct answer is:
<h2>The maximum number of orbits in an atom is <u>Seven.</u></h2><h3>Explanation:</h3>
Every energy level has a limited one orbital including two electrons. The orbits are settled in the sub-levels and there can be further than 1 sub-level as the number of energy levels rises. On energy level 1, there is 1 sub-level and 1 orbital. Energy level 2 can possess 2 sub-levels and 2 orbitals. These remain to develop as you progress from the nucleus of the atom, closing up with an infinite potential number of levels and orbits.