His acceleration is
<em>(-0.05) · (his speed at the bottom of the hill) </em>m/s²
Weight = (mass) x (gravity).
It always acts downward.
On Earth, the acceleration of gravity is 9.807 m/s².
On the Moon, the acceleration of gravity is 1.623 m/s².
On Earth, the rocket's weight is (0.8kg) x (9.8 m/s²) = 7.84 newtons
On the Moon, the rocket's weight is (0.8kg) x (1.62 m/s²) = 1.3 newtons
The force of the rocket engine acts upward.
Its magnitude is 12 newtons. (From the burning chemicals.
Doesn't depend on local gravity. Same force everywhere.)
Now we have all the data we need to mash together and calculate the
answers to the question. You might choose a different method, but the
machine that I have selected to do the mashing with is Newton's 2nd law
of motion:
Net Force = (mass) x (acceleration).
Since the question is asking for acceleration, let's first solve Newton's law
for it. Divide each side by (mass) and we have
Acceleration = (net force) / (mass) .
On Earth, the forces on the rocket are
(weight of 7.84 N down) + (blast of 12 N up) = 4.16 newtons UP (net)
Acceleration = (4.16 newtons UP) / (0.8 kg) = 5.2 m/s² UP .
On the moon, the forces on the rocket are
(weight of 1.3 N down) + (blast of 12 N up) = 10.7 newtons UP (net)
Acceleration = (10.7 newtons UP) / (0.8 kg) = 13.375 m/s² UP
The answer is B. A frame of reference that is accelerating.
Answer:
As altitude increases, the amount of gas molecules in the air decreases—the air becomes less dense than air nearer to sea level. This is what meteorologists and mountaineers mean by "thin air." Thin air exerts less pressure than air at a lower altitude
Answer:
The angular acceleration is 11.66 rad/s²
Explanation:
Step 1: Given data
Three forces are applied to a solid cylinder of mass 12 kg
F1 = 15 N
F2 = 24 N
F3 = 19 N
R2 = 0.22m
R3 = 0.10m
Step 2: Find the magnitude of the angular acceleration
I = ½mr² = ½ * 12kg * (0.22m)² = 0.29 kg*m²
torque τ = I*α
τ = F2*R2 - F1*R1 = 24N*0.22m - 19N*0.10m = 3.38 N*m
This means
I = ½mr² = 0.29 kg*m²
τ = I*α = 3.38 N*m
OR
0.29 kg*m² * α = 3.38 N*m
α = 11.655 rad/s² ≈11.66 rad/s²
The angular acceleration is 11.66 rad/s²