Answer:
The resultant velocity is <u>169.71 km/h at angle of 45° measured clockwise with the x-axis</u> or the east-west line.
Explanation:
Considering west direction along negative x-axis and north direction along positive y-axis
Given:
The car travels at a speed of 120 km/h in the west direction.
The car then travels at the same speed in the north direction.
Now, considering the given directions, the velocities are given as:
Velocity in west direction is, 
Velocity in north direction is, 
Now, since
are perpendicular to each other, their resultant magnitude is given as:

Plug in the given values and solve for the magnitude of the resultant.This gives,

Let the angle made by the resultant be 'x' degree with the east-west line or the x-axis.
So, the direction is given as:

Therefore, the resultant velocity is 169.71 km/h at angle of 45° measured clockwise with the x-axis or the east-west line.
Time stops everything is made out of atoms so if atoms freeze everything freezes
Answer:
1.5 * 10^-2 Tm^2
Explanation:
Electric Flux = B.A cos(theta)
B = 0.055 T
A = 0.32 m^2
theta = 30
Electric Flux = (0.055 T).(0.32 m^2).Cos(30) = 0.0152 = 1.5 * 10^-2 Tm^2
Answer:
Explanation:
initial velocity, u = 0
final velocity, v = 80 ft/s
acceleration, a = 150 ft/s²
Let the time taken is t.
v = u + at
80 = 0 + 150 x t
t = 0.53 second
Answer:
(A) a net torque but no net force on the loop.
Explanation:
The total force on the loop is zero because the forces on the opposite sides of the loop are equal but act in opposite directions and as a result they cancel each other out. The two forces on opposite sides to the axis of rotation each give rise to a torque about the axis of rotation. This torque is directed along the axis of rotation.