This year course engages students in becoming skilled readers of prose written in a variety of periods, disciplines, and
rhetorical contexts and in becoming skilled writers who compose for a variety of purposes. More immediately, the course
prepares the students to perform satisfactorily on the A.P. Examination in Language and Composition given in the spring.
Both their writing and their reading should make students aware of the interactions among a writer’s purposes, audience
expectations, and subjects as well as the way generic conventions and the resources of language contribute to effectiveness
in writing. Students will learn and practice the expository, analytical, and argumentative writing that forms the basis of
academic and professional writing; they will learn to read complex texts with understanding and to write prose of
sufficient richness and complexity to communicate effectively with mature readers. Readings will be selected primarily,
but not exclusively, from American writers. Students who enroll in the class will take the AP examination.
Answer : 51.8 g of nitrogen are needed to produce 100 grams of ammonia gas.
Solution : Given,
Mass of
= 100 g
Molar mass of
= 27 g/mole
Molar mass of
= 28 g/mole
First we have to calculate moles of
.

The given balanced chemical reaction is,

From the given reaction, we conclude that
2 moles of
produced from 1 mole of 
3.7 moles of
produced from
of 
Now we have to calculate the mass of
.
Mass of
= Moles of
× Molar mass of 
Mass of
= 1.85 mole × 28 g/mole = 51.8 g
Therefore, 51.8 g of nitrogen are needed to produce 100 grams of ammonia gas.
Cold blooded animal? it’s a bit vague sorry
Heat energy can be calculated by using the specific heat of a substance multiplying it to the mass of the sample and the change in temperature. It is expressed as:
<span>Energy = mCΔT
</span><span>Energy = 59.7 (0.231) (100-25)
</span><span>Energy = 1034.30 J</span>