Answer:
Supersaturated.
Explanation:
Hello there!
In this case, according to this solubility chart, we infer that for NH3, the solubility starts at 90 grams of NH3 that are soluble in 100 g of water at 0 °C and ends in about 8 g in 100 g of water at 100 °C for a saturated solution.
However, since we are asked for the solubility of NH3 at 20 °C, we can see that, according to the table and the curve for NH3, about 52 g of NH3 are soluble in 100 g of water; thus, for the given 60 g of NH3, we will say that 8 grams will remain undissolved, and therefore, this solution will be supersaturated.
Regards!
FBI Fedral Burea of Investagation
PV=PV
(602.1 L)(2.77atm) = (110.6 L) (X atm)
1667.817=110.6X
15.07971971 atm = X
Rounds to 15.1 (sig figs so much fun)
Answer:
V₂ = 2509.62 cm³
Explanation:
Given data:
Initial volume = 1500 cm³
Initial temperature = -65°C (-65 + 273 = 208 K)
Final temperature = 75°C ( 75 +273 = 348 K)
Final volume = ?
Solution:
The given problem will be solve through the Charles Law.
According to this law, The volume of given amount of a gas is directly proportional to its temperature at constant number of moles and pressure.
Mathematical expression:
V₁/T₁ = V₂/T₂
V₁ = Initial volume
T₁ = Initial temperature
V₂ = Final volume
T₂ = Final temperature
Now we will put the values in formula.
V₁/T₁ = V₂/T₂
V₂ = V₁T₂/T₁
V₂ = 1500 cm³ × 348 K / 208 k
V₂ = 522000 cm³.K / 208 k
V₂ = 2509.62 cm³