Answer:
3.8 secs
Explanation:
Parameters given:
Acceleration due to gravity, g = 9.8 
Initial velocity, u = 11.76 m/s
Final velocity, v = 49 m/s
Using one of Newton's equations of linear motion, we have that:

where t = time of flight of arrow
The sign is positive because the arrow is moving downward, in the same direction as gravitational force.
Therefore:

The arrow was in flight for 3.8 secs
Answer:
Keq = 2k₃
Explanation:
We can solve this exercise using Newton's second one
F = m a
Where F is the eleatic force of the spring F = - k x
Since we have two springs, they are parallel or they are stretched the same distance by the object and the response force Fe is the same for the spring age due to having the same displacement
F + F = m a
k₃ x + k₃ x = m a
a = 2k₃ x / m
To find the effective force constant, suppose we change this spring to what creates the cuddly displacement
Keq = 2k₃
Answer:
33.33 m/sec
Explanation:
A baseball travels 200 metes in 6 seconds,
what is the baseball’s velocity?
use the formula: velocity = distance over time
where (d) distance = 200 m
and (t) time = 6 sec.
plugin values into the formula:
v = d / t
= 200 m / 6 sec
= 33.33 m/sec.
therefore, the baseball's velocity is 33.33 m/sec
Answer:
1700 kg
Explanation:
Let’s use conservation of momentum
32.5 * 388 = 7.42 * mc
mc = 1699.46
mc = 1700 kg
Answer:
B. changing shape and changing volume
Explanation:
*no definite shape (takes the shape of its container)
*no definite volume