Answer
given,
diameter,d₁ = 7.5 cm
d₂ = 4.5 cm
P₁ = 32 kPa
P₂ = 25 kPa
Assuming, we have calculation of flow in the pipe
using continuity equation
A₁ v₁ = A₂ v₂
π r₁² v₁ = π r₂² v₂
Applying Bernoulli's equation
v₂ = 4.01 m/s
fluid flow rate
Q = A₂ V₂
Q = π (0.0225)² x 4.01
Q = 6.38 x 10⁻³ m³/s
flow in the pipe is equal to 6.38 x 10⁻³ m³/s
Answer:
A.
Explanation:
this would make sense but it seems to be more like they both sound different
Answer:
137.2 in pounds and in Newton's it's 588.399
In your question where the ask is to calculate the charge that the small sphere carries which is the mass of it is 441g moving at an acceleration of 13m/s^2 nad having and electric field of 5N/C. So the formula in getting the charge is mutliply the mass and the quotients of Acceleration and the Electric Field so the answer is 1,146.6
Answer:
The burden distance is 7 ft
Solution:
As per the question:
Specific gravity of package emulsion, 
Specific gravity of diabase rock, 
Diameter of the packaged sticks, d = 3 in
Now,
To calculate the first trail shot burden distance, B:
![B = [\frac{2SG_{E}}{SG_{R}} + 1.5]\times d](https://tex.z-dn.net/?f=B%20%3D%20%5B%5Cfrac%7B2SG_%7BE%7D%7D%7BSG_%7BR%7D%7D%20%2B%201.5%5D%5Ctimes%20d)
![B = [\frac{2\times 1.25}{2.76} + 1.5]\times 3 = 7.22](https://tex.z-dn.net/?f=B%20%3D%20%5B%5Cfrac%7B2%5Ctimes%201.25%7D%7B2.76%7D%20%2B%201.5%5D%5Ctimes%203%20%3D%207.22)
B = 7 ft