Shape
A gas is shapeless all other things being equal. It will, if put in a container, occupy every part of the container.
A liquid could also be thought of shapeless. If put in a container, it need not occupy the entire container. It will occupy as much as its calculated volume will permit it to occupy.
A solid will only occupy its original shape.
Volume
A gas will occupy whatever container it is put in within limits. You cannot put a 72 mols of gas in a mm^3 container without some amazing ability to apply a lot of pressure.
A liquid will occupy a volume determined by its density and mass. In general liquids cannot be compressed.
Whatever volume a solid has to start with, it will retain that volume all other things being equal.
This is actually very hard to describe.
Answer:
You may, but it is too risky.
Even though you are being cautious around using electric equipment around water, you'll never know what can happen. You might accidentally drop that piece of electrical equipment you are using into the water. Water can be splashed around by someone or something without you noticing it and it may affect the object you are using. Sometimes, if water comes in contact with an electrical object, it may cause you electric shocks or the equipment you are using has a chance of exploding and may hurt you. You can guarantee that waterproof electrical equipment is safe to use, but it is better not to risk it too much.
Answer:
D)The sound quality for these waves cannot be compared.
Explanation:
I've done it on e2020
The density of ice does not affect the melting rate. But, adding an object does affect the melt rate. The reason this is is because when there is an object, there is less to melt. Hence, affecting the melting rate.
Answer:
Colourless
Explanation:
We know that Y^3+ has the electronic configuration of;
1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 (the 5s and 4d levels are empty).
According to the crystal field theory, the colour of complexes result from transitions between incompletely filled d orbitals.
As a result of this, complexes with empty or completely filled d orbitals are colourless. Thus, [Y(H2O)6]3 is colourless according to the Crystal Field Theory.