Answer:
you don't have to its your choice whether you want to or not.
Explanation:
but you can not leave the fact that there dieing
Answer:
1 m = 100 cm....so 2.5 m = (2.5 * 100) = 250 cm
a = 1st shelf
b = 2nd
c = 3rd
d = 4th
a + b + c + d = 250
b = 2a + 18
c = a - 12
d = a + 4
a + (2a + 18) + (a - 12) + (a + 4) = 250
5a + 10 = 250
5a = 250 - 10
5a = 240
a = 240/5
a = 48 cm <== 1st shelf
b = 2a + 18 = 2(48) + 18 = 114 cm <== 2nd shelf
c = a - 12 = 48 - 12 = 36 cm <== 3rd shelf
d = a + 4 = 48 + 4 = 52 cm <== 4th shelf
so 2nd shelf is 114 cm
A transverse wave is a moving wave in which the current is perpendicular to the direction of the wave or path of propagation. A longitudinal wave are waves in which the displacement of the median is in the direction of the propagation.
Example:
Transverse- pond ripple
Longitudinal- crest and troff
Answer:
simple
Explanation:
<h3>CONCAVE MIRRORS AND LENSES</h3>
<h3>f= negative</h3>
<h3>CONVEX MIRRORS AND LENSES</h3><h3 /><h3>f= positive</h3>
<h3>PLEASE FOLLOW ME AND MARK IT BRAINLIEST</h3>
Answer:
the work is done by the gas on the environment -is W= - 3534.94 J (since the initial pressure is lower than the atmospheric pressure , it needs external work to expand)
Explanation:
assuming ideal gas behaviour of the gas , the equation for ideal gas is
P*V=n*R*T
where
P = absolute pressure
V= volume
T= absolute temperature
n= number of moles of gas
R= ideal gas constant = 8.314 J/mol K
P=n*R*T/V
the work that is done by the gas is calculated through
W=∫pdV= ∫ (n*R*T/V) dV
for an isothermal process T=constant and since the piston is closed vessel also n=constant during the process then denoting 1 and 2 for initial and final state respectively:
W=∫pdV= ∫ (n*R*T/V) dV = n*R*T ∫(1/V) dV = n*R*T * ln (V₂/V₁)
since
P₁=n*R*T/V₁
P₂=n*R*T/V₂
dividing both equations
V₂/V₁ = P₁/P₂
W= n*R*T * ln (V₂/V₁) = n*R*T * ln (P₁/P₂ )
replacing values
P₁=n*R*T/V₁ = 2 moles* 8.314 J/mol K* 300K / 0.1 m3= 49884 Pa
since P₂ = 1 atm = 101325 Pa
W= n*R*T * ln (P₁/P₂ ) = 2 mol * 8.314 J/mol K * 300K * (49884 Pa/101325 Pa) = -3534.94 J