Answer:
Correct answer: Third statement P = 4900 W
Explanation:
Given:
m = 500 kg the mass of the elevator
h = 10 m reached height after t = 10 seconds
P = ? power of the motor
The formula for the calculating power of the motor is:
P = W / t
since work is a measure of change in this case of potential energy then it is:
W = ΔEp = Ep - 0 = Ep
In this case we must take g = 9.81 m/s²
Ep = m g h = 500 · 9.81 · 10 = 49,050 W ≈ 49,000 W
Ep ≈ 49,000 W
P = Ep / t = 49,000 / 10 = 4,900 W
P =4,900 W
God is with you!!!
Answer: 800
Explanation:
1/2 x m x v^2 = m x g x h
KE = 10 x 10 x 8
KE= 800
<u>Answer:</u> The angle of diffraction is 0.498°
<u>Explanation:</u>
To calculate the angle of diffraction, we use the equation given by Bragg, which is:

where,
n = order of diffraction = 3
= wavelength of the light =
(Conversion factor:
)
d = spacing between the crystal planes = 0.100 mm =
(Conversion factor: 1 m = 1000 mm)
= angle of diffraction = ?
Putting values in above equation:

Hence, the angle of diffraction is 0.498°
Years of research have demonstrated that rats are intelligent creatures who experience pain and pleasure, care about one another, are able to read the emotions of others, and would assist other rats, even at their own expense.
<h3>Experiments:</h3>
In trials carried out at Brown University in the 1950s, rats were trained to press a lever for food, but they stopped pressing the lever when they noticed that with each press, a rat in an adjacent cage would scream in pain (after experiencing an electric shock).
Rats were trained to press a lever to lower a block that was hanging from a hoist by electric shocks administered by experimenters. A rat was subsequently hoisted into a harness by the experimenters, and according to their notes, "This animal normally shrieked and wriggled sufficiently while dangling, and if it did not, it was jabbed with a sharp pencil until it exhibited indications of discomfort." Even if it wasn't in danger of receiving a shock, a rat watching the scenario from the floor would pull a lever to lower the hapless rodent to safety.
Learn more about experiments on rats here:
brainly.com/question/13625715
#SPJ4
Answer:
<em>In physics, energy is the quantitative property that must be transferred to an object in order to perform work on, or to heat, the object. Energy is a conserved quantity; the law of conservation of energy states that energy can be converted in form, but not created or destroyed.</em>
<em />
<em>In physics, energy is the quantitative property that must be transferred to an object in order to perform work on, or to heat, the object. Energy is a conserved quantity; the law of conservation of energy states that energy can be converted in form, but not created or destroyed.</em>
Explanation:
<h2>
<u><em>HOPE THIS HELPS</em></u></h2>