Answer:

Explanation:
Given that:
- magnetic field intensity,

- kinetic energy of electron,

- we have mass of electron,

<em>Now, form the mathematical expression of Kinetic Energy:</em>




<u>from the relation of magnetic and centripetal forces we have the radius as:</u>



Answer:
<h3>1.01 s</h3>
Explanation:
Using the equation of motion S = ut+1/2gt² to solve the problem where;
u is the initial velocity of the chocolate = 0m/s
t is the time taken
g is the acceleration due to gravity = 9.81m/s²
S is the height of fall = 5.0m
Substituting the given parameter into the formula to get the time t we have;
5 = 0(t)+1/2(9.81)t²
5 = 4.905t²
t² = 5/4.905
t² = 1.019
t = √1.019
t = 1.009 secs
<em>Hence it will take 1.01 secs for me to catch the chocolate bar</em>
Answer:
A) B = 24 ft
B) H = 24.08 ft
C) M.A = 12.04
D) P = 13.7 lb
Explanation:
A)
Minimum allowable length of base of ramp can be found as follows:
Slope = H/B
where,
Slope = 1/12
H = Height of Ramp = 2 ft
B = Length of Base of Ramp = ?
Therefore,
1/12 = 2 ft/B
B = 2 ft * 12
<u>B = 24 ft</u>
B)
The length of the slope of ramp can be found by using pythagora's theorem:
L = √H² + B²
where,
H = Perpendicular = height = 2 ft
B = Base = Length of Base of Ramp = 24 ft
L = Hypotenuse = Length of Slope of Ramp = ?
Therefore,
H = √[(2 ft)² + (24 ft)²]
<u>H = 24.08 ft</u>
D)
The mechanical advantage of an inclined plane is given by the following formula:
M.A = L/H
M.A = 24.08 ft/2 ft
<u>M.A = 12.04</u>
D)
Another general formula for Mechanical Advantage is:
M.A = W/P
where,
W = Ideal Load = 165 lb
P = Ideal Effort Force = ?
Therefore,
12.04 = 165 lb/P
P = 165 lb/12.04
<u>P = 13.7 lb</u>
Answer:
Hi myself Shrushtee.
Explanation:
The fuse is connected to the live wire so that the appliance will not become charged (have a potential difference of 230 V) after the fuse has melted due to excessive current. Fuses must be fitted onto the live wire so that when it blows, it will disconnect (isolate) the appliance from the high voltage live wire.
Answer:
Explanation:
1. FALL PROTECTION-GENERAL REQUIREMENTS (29 CFR 1926.501) 6,010 VIOLATIONS
2. HAZARD COMMUNICATION (29 CFR 1910.1200). 3,671
3. SCAFFOLDING (29 CFR 1926.451). 2,813