Answer : The 'Ag' is produced at the cathode electrode and 'Cu' is produced at anode electrode under standard conditions.
Explanation :
Galvanic cell : It is defined as a device which is used for the conversion of the chemical energy produces in a redox reaction into the electrical energy. It is also known as the voltaic cell or electrochemical cell.
In the galvanic cell, the oxidation occurs at an anode which is a negative electrode and the reduction occurs at the cathode which is a positive electrode.
We are taking the value of standard reduction potential form the standard table.
![E^0_{[Ag^{+}/Ag]}=+0.80V](https://tex.z-dn.net/?f=E%5E0_%7B%5BAg%5E%7B%2B%7D%2FAg%5D%7D%3D%2B0.80V)
![E^0_{[Cu^{2+}/Cu]}=+0.34V](https://tex.z-dn.net/?f=E%5E0_%7B%5BCu%5E%7B2%2B%7D%2FCu%5D%7D%3D%2B0.34V)
In this cell, the component that has lower standard reduction potential gets oxidized and that is added to the anode electrode. The second forms the cathode electrode.
The balanced two-half reactions will be,
Oxidation half reaction (Anode) : 
Reduction half reaction (Cathode) : 
Thus the overall reaction will be,

From this we conclude that, 'Ag' is produced at the cathode electrode and 'Cu' is produced at anode electrode under standard conditions.
Hence, the 'Ag' is produced at the cathode electrode and 'Cu' is produced at anode electrode under standard conditions.
Answer:
1. The metal atom/ion in these compounds are Ni and Ni2+ respectively.
2. The electrons from s oribital will jump to d orbital and so I expect CO to donate electron pairs in 4p and 4s orbitals and form sp3 hybridisation.
Molar mass of sodium=23g
2 mole sodium gives 2 g H2
i.e 46g sodium gives 2g H2
so 65.4g will give=2.84g H2
now no. of molecules = 2.8/2*avogadros number