Answer:
383.90K
Explanation:
P1 = 851mmHg
T1 = 330K
T2 = ?
P2 = 990mmHg
To solve for P2, we have to use pressure law which states that the pressure of a fixed mass of fixed is directly proportional to its temperature provided that volume remains constant
Mathematically,
P = kT, k = P/T
P1 / T1 = P2 / T2 = P3 / T3 =.......=Pn / Tn
P1 / T1 = P2 / T2
T2 = (P2 × T1) / P1
T2 = (990 × 330) / 851
T2 = 383.90K
The final temperature of the gas is 383.90K
For the element chlorine to be "happy", it needs 8 valence electrons meaning it needs 8 electrons on its outer shell. So the answer would be chlorine because it has 7 valence electrons in the picture and it needs one more to be considered stable.
Answer:
- <em><u>B) Bill's wagon is moving 4 times faster than Tom's. </u></em>
<u />
Explanation:
The motion of the wagons is determined by the net force that acts upon them, according to Newton's second law of motion:
- Force = mass × acceleration ⇒ acceleration = Force / mass
From your data, you can fill this table to compare the accelerations:
Bill's wagon Tom's wagon
mass (lb) 10 20
force 2F F
acceleration 2F/10 F/20
Find the ratio between both accelarations:
- Bill's wagon acceleration / Tom's wagon acceleration
- (2F/10) / (F/20) = (2 × 20 / 10 ) = 4
Meaning that the acceleration of Bill's wagon is 4 times the acceleration of Tom's wagon.
Assuming, that both wagons start from rest, you can obtain the speeds from the kinematic equation for uniformly accelerated motion:
- Speed = acceleration × time, V = a × t.
Call the acceleration of Tom's wagon X, then the acceleration of Bill's wagon will be 4X.
So, depending on the time, using V = a × t, the speeds will vary:
t (s) 1 2 3 4
Speed Tom's wagon X 2X 3X 4X
Speed Bill's wagon 4X 8X 12X 16X
Concluding that Bill's wagon is moving 4 times faster than Tom's (option B).
Answer:
2Au₂S₃ + 6H₂ → 4Au + 6H₂S
Explanation:
Balancing:
2Au₂S₃ + 6H₂ → 4Au + 6H₂S