The radius of the sphere is r=5.15 cm=0.0515 m, and its surface is given by

So the total charge on the surface of the sphere is, using the charge density

:

The electrostatic force between the sphere and the point charge is:

where
ke is the Coulomb's constant
Q is the charge on the sphere

is the point charge
r is their separation
Re-arranging the equation, we can find the separation between the sphere and the point charge:
Answer:
Explanation:
Mass of first cart M1=2.4kg
Velocity of first cart U1=4.1m/s
Mass of second cart M2=1.7kg
Second cart is initially at rest U2=0
After an instant, the velocity of the second cart is U2=-2.8m/s
Now after collision the two cart move together with the same velocity I.e inelastic collision
Using conservation of momentum
Momentum before collision, = momentum after collision
M1U1 + M2U2 = (M1+M2)V
2.4×4.1 + 1.7× -2.8 =(2.4+1.7)V
9.84 - 4.76 = 4.1V
5.08=4.1V
V=5.08/4.1
V=1.24m/s
The momentum of the two cart at that instant is
M1U1+M2U2
2.4×4.1 + 1.7× -2.8
9.84 - 4.76
5.08kgm/s
So the momentum at the instant the velocity is 4.1m/s for cart 1 and -2.8m/s for cart 2 is 5.08kgm/s
Earth quakes are commonly found along fault lines or tectonic plates.
Hope this helped :-) <span />
Use the formula:
E = (1/2) * m * v ^2
For unit consistency, make sure that:
E energy is in joules (J)
m mass is in kilograms (kg)
v velocity is in meters per second (m/s)
So, substituting to the equation:
14= (1/2) * (17) * v^2
By algebraic manipulation, we derive:
v = (2*14/17)^0.5
v = 1.2834 m/s
1.9K viewsView 4 Upvoters
Related Questions (More Answers Below)