<span>Basaltic magma (properly called mafic magma) forms in areas of the mantle where silica (SiO2) is low, but iron and magnesium is high. This usually and most famously occurs along spreading ridges, where oceanic crust is formed, but can occur anywhere -- including surface volcanoes, which can form flood basalts as we commonly know them.
hope it helps
and can you help me with some questions as well? f you dont mind
</span>
Answer:
Most likely, it will be harder to get strong magnets to change phase because they have more density.
<span>A) x = 41t
The classic equation for distance is velocity multiplied by time. And unfortunately, all of your available options have the form of that equation. In fact, the only difference between any of the equations is what looks to be velocity. And in order to solve the problem initially, you need to divide the velocity vector into a vertical velocity vector and a horizontal velocity vector. And the horizontal velocity vector is simply the cosine of the angle multiplied by the total velocity. So
H = 120*cos(70) = 120*0.34202 = 41.04242
So the horizontal velocity is about 41 m/s. Looking at the available options, only "A" even comes close.</span>
Answer: send the message underwater because a more dense medium would make the sound travel faster.
Explanation:
Dolphins communicate using compression waves - longitudinal waves. Longitudinal waves requires a medium to travel. A longitudinal wave transfers energy by the vibration of medium particles in the direction of the wave motion. Compression are the regions where density of the medium is higher and rarefaction is a low density region.
A longitudinal wave travels faster in a denser medium. It has maximum speed in solid and minimum in gas. Thus, to transfer message quickly to dolphin B., dolphin A should send the message underwater and not in air. This is because water has higher density than air. Molecules collide more quickly in water than in air and it takes less time for signal to travel.
magnetic field due to a finite straight conductor is given by

here since it forms an equilateral triangle so we will have

also the perpendicular distance of the point from the wire is

now from the above equation magnetic field due to one wire is given by



now since in equilateral triangle there are three such wires so net magnetic field will be
