Correct answer choice is :
B) Able to travel through a vacuum.
Explanation:
Electromagnetic waves are applied to carry long/short/FM wavelength radio waves, and TV/telephone/wireless signals or services. They are also effective for transferring energy in the form of microwaves, infrared radiation, visible light, ultraviolet light, X-rays, and gamma rays. Electromagnetic waves change from mechanical waves in that they do not need a medium to generate. This means that electromagnetic waves can move not only in the air and solid matters but also in the void of space.
Read more on Brainly.com - brainly.com/question/1697984#readmore
Answer:
288N
Explanation:
Given parameters:
Mass of Cheetah = 12kg
Acceleration = 24m/s²
Unknown:
Force needed by the cheetah to run = ?
Solution:
The force needed by the Cheetah to run is the net force.
According to Newton's law;
Force = mass x acceleration
Insert the given parameters and solve;
Force = 12 x 24 = 288N
Suppose car A is moving with a velocity Va, and car b with a velocity Vb,
According the principle of conservation of momentum:
Va x Ma + Vb x Mb = (Ma + Mb) V
V = (Va x Ma + Vb x Mb)/(Ma +Mb)
V = speed of cars after coupling
V = (Va x 20 mg + Vb x 15 mg)/(20 mg + 15 mg)
Put in the values of Va and Vb, and get the V
Answer:
False
Explanation:
The steel ball and the wooden ball do not have the same force acting on them because their masses are different. But, they have the same acceleration which is the acceleration due to gravity g = 9.8 m/s².
Using the equation of motion under freefall, s = ut +1/2gt². Since u = 0,
s = 1/2gt² ⇒ t = √(2s/g)
Since. s = height is the same for both objects, they land at the same time neglecting air resistance.
The so-called "terminal velocity" is the fastest that something can fall
through a fluid. Even though there's a constant force pulling it through,
the friction or resistance of plowing through the surrounding substance
gets bigger as the speed grows, so there's some speed where the resistance
is equal to the pulling force, and then the falling object can't go any faster.
A few examples:
-- the terminal velocity of a sky-diver falling through air,
-- the terminal velocity of a pecan falling through honey,
-- the terminal velocity of a stone falling through water.
It's not possible to say that "the terminal velocity is ----- miles per hour".
If any of these things changes, then the terminal velocity changes too:
-- weight of the falling object
-- shape of the object
-- surface texture (smoothness) of the object
-- density of the surrounding fluid
-- viscosity of the surrounding fluid .