Answer:
254
Explanation:
use the formula "final Velocity- initial velocity / time = acceleration"
so "X - 14 /4 = 60"
60 x 4 = X - 14
240 +14 = X
X = 254
<h2>
Answer:</h2>
(a) 10N
<h2>
Explanation:</h2>
The sketch of the two cases has been attached to this response.
<em>Case 1: The box is pushed by a horizontal force F making it to move with constant velocity.</em>
In this case, a frictional force
is opposing the movement of the box. As shown in the diagram, it can be deduced from Newton's law of motion that;
∑F = ma -------------------(i)
Where;
∑F = effective force acting on the object (box)
m = mass of the object
a = acceleration of the object
∑F = F - 
m = 50kg
a = 0 [At constant velocity, acceleration is zero]
<em>Substitute these values into equation (i) as follows;</em>
F -
= m x a
F -
= 50 x 0
F -
= 0
F =
-------------------(ii)
<em>Case 2: The box is pushed by a horizontal force 1.5F making it to move with a constant velocity of 0.1m/s²</em>
In this case, the same frictional force
is opposing the movement of the box.
∑F = 1.5F - 
m = 50kg
a = 0.1m/s²
<em>Substitute these values into equation (i) as follows;</em>
1.5F -
= m x a
1.5F -
= 50 x 0.1
1.5F -
= 5 ---------------------(iii)
<em>Substitute </em>
<em> = F from equation (ii) into equation (iii) as follows;</em>
1.5F - F = 5
0.5F = 5
F = 5 / 0.5
F = 10N
Therefore, the value of F is 10N
<em />
Answer:
Centripetal force is the force that keeps the yoyo going in a circle, if the string breaks, the yoyo would would fly off in a direction that is different to the point on the circle.
Answer:

☯ Question :
- How fast is a wave travelling if it has a wavelength of 7 meters and a frequency of 11 Hz?
☯ 
☥ Given :
- Wavelength ( λ ) = 7 meters
- Frequency ( f ) = 11 Hz
☥ To find :
☄ We know ,

where ,
- v = speed of sound
- f = frequency
- λ = wavelength
Now, substitute the values and solve for v.
➺ 
➺ 
-------------------------------------------------------------------
✑ Additional Info :
- Frequency : The number of complete vibrations made by a particle of a body in one second is called it's frequency. It is denoted by the letter f . The SI unit of frequency is hertz ( Hz ).
- Wavelength : The distance between two consecutive compressions or rarefactions of a sound wave is called wavelength of that wave. It is denoted by λ ( lambda ) and it's SI unit is m.
- Speed of a sound wave : The distance covered by a sound wave in one second is called speed of sound wave. It depends on the product of wavelength and frequency of the wave.
Hope I helped!
Have a wonderful time! ツ
▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁
<h2>
Answer:</h2>
<u>Friction:</u>
When an object slips on a surface, an opposing force acts between the tangent planes which acts in the opposite direction of motion. This opposing force is called Friction. Or in other words, Friction is the opposing force that opposes the motion between two surfaces.
The main component of friction are:
<u>Normal Reaction (R):
</u>
Suppose a block is placed on a table in the above picture, which is in resting state, then two forces are acting on it at that time.
The first is due to its weight mg which is working from its center of gravity towards the vertical bottom.
The second one is superimposed vertically upwards by the table on the block, called the reaction force (P). This force passes through the center of gravity of the block.
Due to P = mg, the box is in equilibrium position on the table.
<u>Coefficient of friction ( </u>μ )<u>:
</u>
The ratio of the force of friction and the reaction force is called the coefficient of friction.
Coefficient of friction, µ = force of friction / reaction force
μ = F / R
The coefficient of friction is volume less and dimensionless.
Its value is between 0 to 1.
<u>Advantage and disadvantage from friction force:
</u>
- The advantage of the force of friction is that due to friction, we can walk on the earth without slipping.
- Brakes in all vehicles are due to the force of friction.
- We can write on the board only because of the force of friction.
- The disadvantage of this force is that due to friction, some parts of energy are lost in the machines and there is wear and tear on the machines.
<u>How to reduce friction:
</u>
- Using lubricants (oil or grease) in machines.
- Friction can be reduced by using ball bearings etc.
- Using a soap solution and powder.