1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Yanka [14]
3 years ago
9

A group of students prepare for a robotic competition and build a robot that can launch large spheres of mass M in the horizonta

l direction with variable speed and from a variable vertical position and a fixed horizontal position x=0.
The robot is calibrated by adjusting the speed at which the sphere is launched and the height of the robot’s sphere launcher. Depending on where the spheres land on the ground, students earn points based on the accuracy of the robot. The robot is calibrated so that when the spheres are launched from a vertical position y=H and speed v0, they consistently land on the ground on a target that is at a position x=D. Positive directions for vector quantities are indicated in the figure.

When the students arrive at the competition, it is determined that the height of the sphere launcher can no longer be adjusted due to a mechanical malfunction. Therefore, the spheres must be launched at a vertical position of y=H2. However, the spheres may be launched at speed v0 or 2v0.
Question: In a clear response that may also contain diagrams and/or equations, describe which speed, v0 or 2v0, the students should launch the sphere at so that they earn the maximum number of points in the competition.

Physics
1 answer:
jeyben [28]3 years ago
7 0

Answer:

V_0

Explanation:

Given that, the range covered by the sphere, M, when released by the robot from the height, H, with the horizontal speed V_0 is D as shown in the figure.

The initial velocity in the vertical direction is 0.

Let g be the acceleration due to gravity, which always acts vertically downwards, so, it will not change the horizontal direction of the speed, i.e. V_0 will remain constant throughout the projectile motion.

So, if the time of flight is t, then

D=V_0t\; \cdots (i)

Now, from the equation of motion

s=ut+\frac 1 2 at^2\;\cdots (ii)

Where s is the displacement is the direction of force, u is the initial velocity, a is the constant acceleration and t is time.

Here, s= -H, u=0, and a=-g (negative sign is for taking the sigh convention positive in +y direction as shown in the figure.)

So, from equation (ii),

-H=0\times t +\frac 1 2 (-g)t^2

\Rightarrow H=\frac 1 2 gt^2

\Rightarrow t=\sqrt {\frac {2H}{g}}\;\cdots (iii)

Similarly, for the launched height 2H, the new time of flight, t', is

t'=\sqrt {\frac {4H}{g}}

From equation (iii), we have

\Rightarrow t'=\sqrt 2 t\;\cdots (iv)

Now, the spheres may be launched at speed V_0 or 2V_0.

Let, the distance covered in the x-direction be D_1 for V_0 and D_2 for 2V_0, we have

D_1=V_0t'

D_1=V_0\times \sqrt 2 t [from equation (iv)]

\Rightarrow D_1=\sqrt 2 D [from equation (i)]

\Rightarrow D_1=1.41 D (approximately)

This is in the 3 points range as given in the figure.

Similarly, D_2=2V_0t'

D_2=2V_0\times \sqrt 2 t [from equation (iv)]

\Rightarrow D_2=2\sqrt 2 D [from equation (i)]

\Rightarrow D_2=2.82 D (approximately)

This is out of range, so there is no point for 2V_0.

Hence, students must choose the speed V_0 to launch the sphere to get the maximum number of points.

You might be interested in
Which term describes atoms with different atomatic masses due to varying numbers of neutrons
frez [133]

Isotopes is the answer.

C

8 0
3 years ago
Read 2 more answers
What happens to jetstream’s as they get closer to the equator
MAVERICK [17]

Answer:They stop because jet streams follow boundaries between hot and cold air.

Explanation:

6 0
3 years ago
Read 2 more answers
An inflatable raft (unoccupied) floats down a river at an approximately constant speed of 5.6 m/s. A child on a bridge, 71 m abo
saveliy_v [14]

Answer:

21.28 m

Explanation:

height, h = 71 m

velocity of raft, v = 5.6 m/s

let the time taken by the stone to reach to raft is t.

use second equation of motion for stone

h = ut + \frac{1}{2}at^{2}

u = 0 m/s, h = 71 m, g = 9.8 m/s^2

71 = 0 + 0.5 x 9.8 x t^2

t = 3.8 s

Horizontal distance traveled by the raft in time t

d = v x t = 5.6 x 3.8 = 21.28 m

3 0
3 years ago
The cabinet is mounted on coasters and has a mass of 45 kg. The casters are locked to prevent the tires from rotating. The coeff
stira [4]

Answer:

the force P required for impending motion is 132.3 N

the largest value of "h" allowed if the cabinet is not to tip over is 0.8 m

Explanation:

Given that:

mass of the cabinet  m = 45 kg

coefficient of static friction μ =  0.30

A free flow body diagram illustrating what the question represents is attached in the file below;

The given condition from the question let us realize that ; the casters are locked to prevent the tires from rotating.

Thus; considering the forces along the vertical axis ; we have :

\sum f_y =0

The upward force and the downward force is :

N_A+N_B = mg

where;

\mathbf { N_A  \ and  \ N_B} are the normal contact force at center point A and B respectively .

N_A+N_B = 45*9.8

N_A+N_B = 441    ------- equation (1)

Considering the forces on the horizontal axis:

\sum f_x = 0

F_A +F_B  = P

where ;

\mathbf{ F_A \ and \ F_B } are the static friction at center point A and B respectively.

which can be written also as:

\mu_s N_A + \mu_s N_B  = P

\mu_s( N_A +  N_B)  = P

replacing our value from equation (1)

P = 0.30 ( 441)    

P = 132.3 N

Thus; the force P required for impending motion is 132.3 N

b) Since the horizontal distance between the casters A and B is 480 mm; Then half the distance = 480 mm/2 = 240 mm = 0.24 cm

the largest value of "h" allowed for  the cabinet is not to tip over is calculated by determining the limiting condition  of the unbalanced torque whose effect is canceled by the normal reaction at N_A and it is shifted to N_B:  

Then:

\sum M _B = 0

P*h = mg*0.24

h =\frac{45*9.8*0.24}{132.3}

h = 0.8 m

Thus; the largest value of "h" allowed if the cabinet is not to tip over is 0.8 m

6 0
3 years ago
A −4.00 μC charge sits in static equilibrium in the center of a conducting spherical shell that has an inner radius 3.13 cm and
Mariulka [41]

Answer:

(a). The charge on the outer surface is −2.43 μC.

(b). The charge on the inner surface is 4.00 μC.

(c). The electric field outside the shell is 3.39\times10^{7}\ N/C

Explanation:

Given that,

Charge q₁ = -4.00 μC

Inner radius = 3.13 m

Outer radius = 4.13 cm

Net charge q₂ = -6.43 μC

We need to calculate the charge on the outer surface

Using formula of charge

q_{out}=q_{2}-q_{1}

q_{out}=-6.43-(-4.00)

q_{out}=-2.43\ \mu C

The charge on the inner surface is q.

q+(-2.43)=-6.43

q=-6.43+2.43= 4.00\ \mu C

We need to calculate the electric field outside the shell

Using formula of electric field

E=\dfrac{kq}{r^2}

Put the value into the formula

E=\dfrac{9\times10^{9}\times6.43\times10^{-6}}{(4.13\times10^{-2})^2}

E=33927618.73\ N/C

E=3.39\times10^{7}\ N/C

Hence, (a). The charge on the outer surface is −2.43 μC.

(b). The charge on the inner surface is 4.00 μC.

(c). The electric field outside the shell is 3.39\times10^{7}\ N/C

5 0
3 years ago
Other questions:
  • Identify the basic structure of a chemical equation
    5·1 answer
  • An artillery shell is fired at an angle of 26.3 ⦠above the horizontal ground with an initial speed of 1770 m/s. the accelerati
    9·1 answer
  • Cattle are likely to become highly agitated when separated from<br> their herdmates.
    12·1 answer
  • The direction of a natural process is indicated by which of the following? A. conservation of energy. B. change in entropy C. th
    8·1 answer
  • What is the color and frequency of the light that is produced? 1 nm = 1 x 10^-7 meters and the speed of light (c) = 3.0 x 10^8 m
    8·1 answer
  • I don’t get how to answer the questions.
    12·1 answer
  • A cannon sitting on level ground is aimed at 45.0 degrees relative to the horizontal. It fires a test shot at a target located 1
    12·1 answer
  • What Grade will you give my One Pager so Far?
    15·2 answers
  • An offshore oil platform houses a drill for drilling oil. The drill descends from the platform and enters the ocean. At the bott
    5·2 answers
  • HELP ASAP
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!