That's called an "acceleration" or "slowing down".
Answer:
<em>the ball travels a distance of 8.84 m</em>
Explanation:
Range: Range is defined as the horizontal distance from the point of projection to the point where the projectile hits the projection plane again.
R = (U²sin2∅)/g.............................. Equation 1
Where R = range, U = initial velocity, ∅ = angle of projection, g = acceleration due to gravity.
<em>Given: U = 10 m/s, ∅ = 60°</em>
<em>Constant: g = 9.8 m/s²</em>
Substituting these values into equation 1
R = [10²×sin(2×60)]/9.8
R = (100sin120)/9.8
R = 100×0.8660/9.8
R = 86.60/9.8
R = 8.84 m
<em>Therefore the ball travels a distance of 8.84 m</em>
The correct answer of the given question above would be option C. In 1947 Thor Heyerdahl sailed a simple raft from Peru to Polynesia, following the ocean currents for more than 6,000 kilometers.<span> This statement accurately describes what Heyerdahl proved by this voyage. It would have been possible for people from ancient Peru to reach Polynesia by following ocean currents. </span>
The object lost electrons because one electron adds a negative to the object. <span />