QUESTION: A pure jet engine propels and aircraft at 340 m/s through air at 45 kPa and -13C. The inlet diameter of this engine is 1.6 m, the compressor pressure ratio is 13, and the temperature at the turbine inlet is 557C. Determine the velocity at the exit of this engines nozzle and the thrust produced.
ANSWER: Due to the propulsion from the inlet diameter of this engine bring 1.6 m allows the compressor rations to radiate allowing thrust propultion above all velocitic rebisomes.
F= ma; a= F/m
a = 26.4 N/60 kg= 0.44 m/s^2
Answer:
The latent heat of vaporization of water is 2.4 kJ/g
Explanation:
The given readings are;
The first (mass) balance reading (of the water) in grams, m₁ = 581 g
The second (mass) balance reading (of the water) in grams, m₂ = 526 g
The first joulemeter reading in kilojoules (kJ), Q₁ = 195 kJ
The second joulemeter reading in kilojoules (kJ), Q₂ = 327 kJ
The latent heat of vaporization = The heat required to evaporate a given mass water at constant temperature
Based on the measurements, we have;
The latent heat of vaporization = ΔQ/Δm
∴ The latent heat of vaporization of water = (327 kJ - 195 kJ)/(581 g - 526 g) = 2.4 kJ/g
The latent heat of vaporization of water = 2.4 kJ/g
Answer:
Right now I have three.
Explanation: Thanks for the points luv ^-^.