Answer:
185.05 g.
Explanation
Firstly, It is considered as a stichiometry problem.
From the balanced equation: 2LiCl → 2Li + Cl₂
It is clear that the stichiometry shows that 2.0 moles of LiCl is decomposed to give 2.0 moles of Li metal and 1.0 moles of Cl₂, which means that the molar ratio of LiCl : Li is (1.0 : 1.0) ratio.
We must convert the grams of Li metal (30.3 g) to moles (n = mass/atomic mass), atomic mass of Li = 6.941 g/mole.
n = (30.3 g) / (6.941 g/mole) = 4.365 moles.
Now, we can get the number of moles of LiCl that is needed to produce 4.365 moles of Li metal.
Using cross multiplication:
2.0 moles of LiCl → 2.0 moles of Li, from the stichiometry of the balanced equation.
??? moles of LiCl → 4.365 moles of Li.
The number of moles of LiCl that will produce 4.365 moles of Li (30.3 g) is (2.0 x 4.365 / 2.0) = 4.365 moles.
Finally, we should convert the number of moles of LiCl into grams (n = mass/molar mass).
Molar mass of LiCl = 42.394 g/mole.
mass = n x molar mass = (4.365 x 42.394) = 185.05 g.
If I made no mistake in calculation, the given answer must be correct...(tried my best)
elements : carbon hydrogen oxygen Fluorine
composition [C] 24 3 16 57
M r 12 1 16 19
(divide C by Mr) 2 3 1 3
(Divide by smallest value) 2 3 1 3
(smallest value = 1...so all value remained constant)
Empirical formula : C2H3OF3
if molar mas = 100 g per mole, then
first step calculate Mr. of empirical formula: [= 100]
Them molecular formula = empirical formula
Answer:
B
Explanation:
CH4 + O2 →H2O + CO2
Left side
C = 1
H = 4
O = 2
Right side
C = 1
H = 2
O = 3
So find common denominator in this case would be 6 O
CH4 + 3O2 →2H2O + CO2
Left side
C = 1
H = 4
O = 6
Right side
C = 1
H = 4
O = 6
Answer:
When your cooking, or baking a cake. For example, If you bake a cake you are adding ingredients to the cake. When you still the cake into the oven all the ingredients are reacting to each other, causing a chemical reaction.
Explanation: