It goes in the downward direction
Answer:
A) 
B) 
C) 
Explanation:
Given:
- mass of flywheel,

- diameter of flywheel,

- rotational speed of flywheel,

- duration for which the power is off,

- no. of revolutions made during the power is off,

<u>Using equation of motion:</u>



Negative sign denotes deceleration.
A)
Now using the equation:


is the angular velocity of the flywheel when the power comes back.
B)
Here:

Now using the equation:


is the time after which the flywheel stops.
C)
Using the equation of motion:


revolutions are made before stopping.
False, Carbon usually forms four covalent bonds.
Given:
v(final velocity)= 7.5 m/s
t(time taken to pedal along)=4.5 s
Displacement (s)=19 m
Now we know that
s=ut+1/2(at^2)
Where s is the displacement measured in m
u is the initial velocity measured in m/sec
a is the acceleration measured in m/s^2.
t is the time taken to cover this distance.
Substituting the given values in the above formula we get
19= 4.5u+1/2(a x 4.5 x 4.5)
20.25 a + 9 u = 38
Now we also know that
v= u + at
Substituting the given values in the above formula we get
7.5= u + 4.5a
Solving for u and a from the above equations we get
u = 0.944m/s
a= 1.45 m/s^2
Thus the initial velocity is 0.944 m/s