Answer:
Partial Pressure of F₂ = 1.30 atm
Partial pressure of Cl₂ = 0.70 atm
Explanation:
Partial pressure for gases are given by Daltons law.
Total pressure of a gas mixture = sum of the partial pressures of individual gases
Pt = P(f₂) + P(cl₂)
Partial pressure = mole fraction × total pressure
Let the mass of each gas present be m
Number of moles of F₂ = m/38 (molar mass of fluorine = 38 g/Lol
Number of moles of Cl₂ = m/71 (molar mass of Cl₂)
Mole fraction of F₂ = (m/38)/((m/38) + (m/71)) = 0.65
Mole fraction of Cl₂ = (m/71)/((m/38) + (m/71)) = 0.35 or just 1 - 0.65 = 0.35
Partial Pressure of F₂ = 0.65 × 2 = 1.30 atm
Partial pressure of Cl₂ = 0.35 × 2 = 0.70 atm
Explanation:
It is given that,
The angle of projection is 60 degrees
Initial velocity of the ball is 120 m/s
We need to find the time taken to get to the maximum height and the time of flight.
Time taken to reach the maximum height is given by :

g is acceleration due to gravity

(ii) Time of flight,

So,

Hence, this is the required solution.
Answer:
Both will reach to same height
Explanation:
Here we can see that friction is to be ignored
so we can say that work done by all the non conservative forces is change in mechanical energy
Since all non conservative forces here is zero
so mechanical energy is conserved here
so here we can say that sum of initial kinetic energy and potential energy = sum of final kinetic energy and potential energy
So we will have

now maximum height is given as

so here we can say that greatest height will be independent of the mass so they both will reach at same height
Answer:2.541
Explanation:
Well , Potential Energy = mgh
m=mass = 82
g=acceleration of gravity=9.80m/s^2
h=what we are looking for
PE=mgh
PE/(mg) = h
Substitute in the values:
1970/(82 x 9.8) = h 2.541