They are malleable and lustrous, and can conduct both electricity and thermal heat
Answer:
A) 6N
Explanation:
the weight of the astronaut on earth can be calculated with the formula
Weight = mass * gravity of earth
Since the gravitational force is one-hundredth of Earth, the formula should be
Weight = mass * (gravity of earth / 100)
Weight = (mass * gravity of earth) / 100
Since you already know the weight, you only need to divide by 100
Weight = (mass * gravity of earth) / 100
Weight = 600N / 100
Weight = 6N
To solve this problem we will apply the concepts related to the Force of gravity given by Newton's second law (which defines the weight of an object) and at the same time we will apply the Hooke relation that talks about the strength of a body in a system with spring.
The extension of the spring due to the weight of the object on Earth is 0.3m, then


The extension of the spring due to the weight of the object on Moon is a value of
, then

Recall that gravity on the moon is a sixth of Earth's gravity.




We have that the displacement at the earth was
, then


Therefore the displacement of the mass on the spring on Moon is 0.05m
Fibrous joint functions as a suture to tightly bind bones together so they do not move.
The insulin levels lead to the cause of type 2 diabetes