Answer:
g₂ = 11 m/s²
Explanation:
The value of free-fall acceleration on the surface of a planet is given by the following formula:

where,
g = free-fall acceleration
G = Universal Gravitational Constant
m = mass of the planet
r = radius of planet
FOR PLANET 1:
--------------------- equation (1)
FOR PLANET 2:

using equation (1):

<u>g₂ = 11 m/s²</u>
Answer:
Creatine is a great option , its not gonna help long term running ; but a great boost when you first start the run/jog.
Now to run faster you have to build great endurance and that is done through constant exercise running and stamina work outs such as sports , sprints calistetics etc.
Explanation:
Its not a simple 1 time thing and your suddenly , it takes drive and motivation !
Hope i was able to help you out ! Have a great day :)
Answer:
0.00034 m
Explanation:
Since the length of the aluminium bar, L is given by , L = 1.0000 + 2.4 × 10⁻⁵T and T = 14.1°C, we substitute the value of T into L. So, we have L = 1.0000 + 2.4 × 10⁻⁵ × 14.1°C = 1.0000 + 0.0003384 = 1.0003384 m. The change in length is thus 1.0003384 - 1.0000 = 0.0003384 m ≅ 0.00034 m
Answer:
I'm pretty sure this is not a complete question. My guess is that you are trying to add/subtract vectors. Vectors have both magnitude and direction, so vector A is pretty clear, but a magnitude of 13 (i'm guessing a resultant) without a direction is weird.
IF 13 is the magnitude of the resultant, vector B added to vector A could have any magnitude 17 ≤ B ≤ 43
It could have any direction of
θ = (225 - 180) ± arcsin(13/30)
θ = 45 ± 25.679...
70.679 ≤ θ ≤ 19.321
components of vector B would be
Bx = |B|cosθ
By = |B|sinθ
Answer:
the rate of flow = 29.28 ×10⁻³ m³/s or 0.029 m³/s
Explanation:
Given:
Diameter of the pipe = 100mm = 0.1m
Contraction ratio = 0.5
thus, diameter at the throat of venturimeter = 0.5×0.1m = 0.05m
The formula for discharge through a venturimeter is given as:

Where,
is the coefficient of discharge = 0.97 (given)
A₁ = Area of the pipe
A₁ = 
A₂ = Area at the throat
A₂ = 
g = acceleration due to gravity = 9.8m/s²
Now,
The gauge pressure at throat = Absolute pressure - The atmospheric pressure
⇒The gauge pressure at throat = 2 - 10.3 = -8.3 m (Atmosphric pressure = 10.3 m of water)
Thus, the pressure difference at the throat and the pipe = 3- (-8.3) = 11.3m
Substituting the values in the discharge formula we get
or

or
Q = 29.28 ×10⁻³ m³/s
Hence, the rate of flow = 29.28 ×10⁻³ m³/s or 0.029 m³/s