Given Information:
Resistance of circular loop = R = 0.235 Ω
Radius of circular loop = r = 0.241 m
Number of turns = n = 10
Voltage = V = 13.1 V
Required Information:
Magnetic field = B = ?
Answer:
Magnetic field = 0.00145 T
Explanation:
In a circular loop of wire with n number of turns and radius r and carrying a current I induces a magnetic field B
B = μ₀nI/2r
Where μ₀= 4πx10⁻⁷ is the permeability of free space and current in the loop is given by
I = V/R
I = 13.1/0.235
I = 55.74 A
B = 4πx10⁻⁷*10*55.74/2*0.241
B = 0.00145 T
Therefore, the magnetic field at the center of this circular loop is 0.00145 T
A baseball will curve better on the flat plain if it is higher than sea level but low elevation.
Hope this helped!
1. C. Gravitational attraction exists between the two objects.
Explanation:
Gravitational attraction is always exerted between two objects which have mass, and its magnitude is given by:

where G is the gravitational constant, m1 and m2 the masses of the two objects, and r the separation between them. Since the two objects have for sure non-zero masses m1 and m2, even if they are 20 miles apart, the value of the gravitational attraction F is non-zero, so the correct answer is C.
2. D. Two atoms come together to form a molecule.
Explanation:
this outcome is actually caused by the electrostatic forces between the two atoms, not by gravitational force. In fact, gravitational force becomes relevant only when the masses of the two objects involved are large enough: this is the case for planets, stars, galaxies, and objects in the universe. However, two atoms have very small masses, so the gravitational force between them is really negligible. On this smaller scales, the electrostatic force is much stronger than the gravitational force, so the electrostatic force is the real responsible for the formation of bonds between atoms.
Answer:
1.6 m/s²
Explanation:
Weight equals mass times acceleration due to gravity.
F = mg
14.4 N = (9 kg) g
g = 1.6 m/s²
Answer:
The magnitude of the angular acceleration ∝ =
}[/tex]
Explanation:
The angular acceleration ∝ is equal to the torque (radius multiplied by force) divided by the mass times the square of the radius. The magnitude of angular acceleration ∝ will have the equation above but we have to replace the mass in the equation by 2.8kg as stated.