Answer:
Light waves carry energy parallel to the motion of the wave, while sound waves carry energy perpendicular to it. Sound waves carry energy parallel to the motion of the wave, while light waves carry energy perpendicular to it.
Explanation:
Answer:
0.00034 m
Explanation:
Since the length of the aluminium bar, L is given by , L = 1.0000 + 2.4 × 10⁻⁵T and T = 14.1°C, we substitute the value of T into L. So, we have L = 1.0000 + 2.4 × 10⁻⁵ × 14.1°C = 1.0000 + 0.0003384 = 1.0003384 m. The change in length is thus 1.0003384 - 1.0000 = 0.0003384 m ≅ 0.00034 m
Answer:
<em>Undergo global warming at a faster rate than what we are seeing currently</em>
Explanation:
Climate can be described as the average weather of a place. The climate of a particular place can be described after looking at the temperature of the place for a year or more.
If factors, such as the Sun and volcanoes controlled climates then there would be an increase in the temperature and more global warming. Volcanoes can be described as heat erupting from mountains which will, of course, lead to global warming.
Answer:
Final Length = 30 cm
Explanation:
The relationship between the force applied on a string and its stretching length, within the elastic limit, is given by Hooke's Law:
F = kΔx
where,
F = Force applied
k = spring constant
Δx = change in length of spring
First, we find the spring constant of the spring. For this purpose, we have the following data:
F = 50 N
Δx = change in length = 25 cm - 20 cm = 5 cm = 0.05 m
Therefore,
50 N = k(0.05 m)
k = 50 N/0.05 m
k = 1000 N/m
Now, we find the change in its length for F = 100 N:
100 N = (1000 N/m)Δx
Δx = (100 N)/(1000 N/m)
Δx = 0.1 m = 10 cm
but,
Δx = Final Length - Initial Length
10 cm = Final Length - 20 cm
Final Length = 10 cm + 20 cm
<u>Final Length = 30 cm</u>
Answer:
B
Explanation:
Fermium is a synthetic element with the symbol Fm and atomic number 100. It is an actinide and the heaviest element that can be formed by neutron bombardment of lighter elements, and hence the last element that can be prepared in macroscopic quantities, although pure fermium metal has not yet been prepared.[3] A total of 19 isotopes are known, with 257Fm being the longest-lived with a half-life of 100.5 days.
It was discovered in the debris of the first hydrogen bomb explosion in 1952, and named after Enrico Fermi, one of the pioneers of nuclear physics. Its chemistry is typical for the late actinides, with a preponderance of the +3 oxidation state but also an accessible +2 oxidation state. Owing to the small amounts of produced fermium and all of its isotopes having relatively short half-lives, there are currently no uses for it outside basic scientific research.