Electrons that are further away from the nucleus have more energy. As they enter an "excited" state, they jump up orbits.
Answer:
The distance is
Explanation:
From the question we are told that
The initial speed of the electron is 
The mass of electron is 
Let
be the distance between the electron and the proton when the speed of the electron instantaneously equal to twice the initial value
Let
be the initial kinetic energy of the electron \
Let
be the kinetic energy of the electron at the distance
from the proton
Considering that energy is conserved,
The energy at the initial position of the electron = The energy at the final position of the electron
i.e

are the potential energy at the initial position of the electron and at distance d of the electron to the proton
Here 
So the equation becomes

Here
are the charge on the electron and the proton and their are the same since a charge on an electron is equal to charge on a proton
is electrostatic constant with value 
i.e
is the velocity at distance d from the proton = 2
So the equation becomes

![\frac{1}{2} mv_i^2 = 4 [\frac{1}{2}mv_i^2 ]- \frac{k(q)^2}{d}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B2%7D%20mv_i%5E2%20%20%3D%204%20%5B%5Cfrac%7B1%7D%7B2%7Dmv_i%5E2%20%5D-%20%5Cfrac%7Bk%28q%29%5E2%7D%7Bd%7D)
![3[\frac{1}{2}mv_i^2 ] = \frac{k(q)^2}{d}](https://tex.z-dn.net/?f=3%5B%5Cfrac%7B1%7D%7B2%7Dmv_i%5E2%20%5D%20%3D%20%5Cfrac%7Bk%28q%29%5E2%7D%7Bd%7D)
Making d the subject of the formula



The energy stored by a system of capacitors is given by

where Ceq is the equivalent capacitance of the system, and V is the voltage applied.
In the formula, we can see there is a direct proportionality between U and C. This means that if we want to increase the energy stored by 4 times, we have to increase C by 4 times, if we keep the same voltage.
Calling

the capacitance of the original capacitor, we can solve the problem by asking that, adding a new capacitor with

, the new equivalent capacitance of the system

must be equal to

. If we add the new capacitance X in parallel, the equivalent capacitance of the new system is the sum of the two capacitance

and since Ceq must be equal to 4 C1, we can write

from which we find
Answer:
Rayon
Wool
Silk Yarn
Explanation:
Rayon
This is Fabric A. Rayon basically burns very quickly even quicker than fabrics like cotton and linen. Its ash is gray in color. The rayon fabric smells of burning paper when it is burnt.
Wool:
This is Fabric B. Wool is basically hard to ignite. It burns slowly. Its ash is dark in color. The wool fabric smells of burning hair when it is burnt.
Silk Yarn:
This is Fabric C. The silk yarn shrinks from the flame when it is burned. It has a grayish black ash. The silk yarn fabric smells burnt meat of when it is burnt.