<h3>
Answer: 130 newtons</h3>
===============================================================
Explanation:
We'll need the acceleration first.
- The initial speed (let's call that Vi) is 8.0 m/s
- The final speed (Vf) is 0 m/s since Sam comes to a complete stop at the end.
- This happens over a duration of t = 4.0 seconds
The acceleration is equal to the change in speed over change in time
a = acceleration
a = (change in speed)/(change in time)
a = (Vf - Vi)/(4 seconds)
a = (0 - 8.0)/4
a = -8/4
a = -2
The acceleration is -2 m/s^2, meaning that Sam slows down by 2 m/s every second. Negative accelerations are often associated with slowing down. The term "deceleration" can be used here.
Here's a further break down of Sam's speeds at the four points of interest
- At 0 seconds, he's going 8 m/s
- At the 1 second mark, he's slowing down to 8-2 = 6 m/s
- At the 2 second mark, he's now at 6-2 = 4 m/s
- At the 3 second mark, he's at 4-2 = 2 m/s
- Finally, at the 4 second mark, he's at 2-2 = 0 m/s
Next, we'll apply Newton's Second Law of motion
F = m*a
where,
- F = force applied
- m = mass
- a = acceleration
We just found the acceleration, and the mass is fairly easy as all we need to do is add Sam's mass with the sled's mass to get 60+5.0 = 65 kg
So the force applied must be:
F = m*a
F = 65*(-2)
F = -130 newtons
This force is negative to indicate it's pushing against the sled's momentum to slow Sam down.
The magnitude of this force is |F| = |-130| = 130 newtons
The missing diagram is in the attachments.
Answer: X: positive Y: positive
Explanation: Electric field is a vector quantity, which means it can be represented by a vector arrow: the arrow points in the direction of electric field and its length represents the magnitude at a given location. There are another representation of the electric field called electric field lines, <u>in which the line points away from a positively charged source and towards a negatively charged source</u>. This occurs because it follows a pattern, where the lines points in the direction that a positive test charge would have if it is accelerating on the line.
Analyzing the diagram, it can be observed that the lines are pointing away from both of the charged objects. Therefore, both X and Y are <u>positively charged</u>.
Answer:

Explanation:
As we know that the formula of range is given as

now we know that
maximum value of the range of the projectile is given as

now we need to find such angles for which the range is half the maximum value
so we will have




B strength training I think that’s the answer
Answer:
16.2 s
Explanation:
Given:
Δx = 525 m
v₀ = 0 m/s
a = 4.00 m/s²
Find: t
Δx = v₀ t + ½ at²
525 m = (0 m/s) t + ½ (4.00 m/s²) t²
t = 16.2 s