Answer:
The "2" tells us that there are 2 hydrogen atoms in this compound.
Explanation:
The gravitional potential energy, relative to the bottom of the giant drop, in joules, is (9800) times (the height of the drop in meters).
That's the PE of the empty car only, not counting any hapless screaming souls who may be trapped in it at that moment.
Answer:
<em>3924 Pa</em>
<em></em>
Explanation:
Volume of cylinder = 2 L = 0.002 m^3 (1000 L = 1 m^3)
diameter of the inner cylinder = 8 cm = 0.08 m (100 cm = 1 m)
radius of the inner cylinder = diameter/2 = 0.08/2 = 0.04 m
area of the inner cylinder = 
where
= 3.142,
and r = radius = 0.04 m
area of inner cylinder = 3.142 x
= 0.005 m^2
<em>height h of the water in this cylinder = volume/area</em>
h = 0.002/0.005 = 0.4 m
<em>pressure at the bottom of the cylinder due to the height of water = pgh</em>
where
p = density of water = 1000 kg/m^3
g = acceleration due to gravity = 9.81 m/s^2
h = height of water within this cylinder = 0.4 m
pressure = 1000 x 9.81 x 0.4 = <em>3924 Pa</em>
Answer: An 8 kg book at a height of 3 m has the most gravitational potential energy.
Explanation:
Gravitational potential energy is the product of mass of object, height of object and gravitational field.
So, formula to calculate gravitational potential energy is as follows.
U = mgh
where,
m = mass of object
g = gravitational field = 
h = height of object
(A) m = 5 kg and h = 2m
Therefore, its gravitational potential energy is calculated as follows.

(B) m = 8 kg and h = 2 m
Therefore, its gravitational potential energy is calculated as follows.

(C) m = 8 kg and h = 3 m
Therefore, its gravitational potential energy is calculated as follows.

(D) m = 5 kg and h = 3 m
Therefore, its gravitational potential energy is calculated as follows.

Thus, we can conclude that an 8 kg book at a height of 3 m has the most gravitational potential energy.