Answer:
Vy = V0 sin 38 where Vy is the initial vertical velocity
The ball will accelerate downwards (until it lands)
Note the signs involved if Vy is positive then g must be negative
The acceleration is constant until the ball lands
t (upwards) = (0 - Vy) / -g = Vy / g final velocity = 0
t(downwards = (-Vy - 0) / -g = Vy / g final velocity = -Vy
time upwards = time downwards (conservation laws)
Answer:
b. 9.5°C
Explanation:
= Mass of ice = 50 g
= Initial temperature of water and Aluminum = 30°C
= Latent heat of fusion = 
= Mass of water = 200 g
= Specific heat of water = 4186 J/kg⋅°C
= Mass of Aluminum = 80 g
= Specific heat of Aluminum = 900 J/kg⋅°C
The equation of the system's heat exchange is given by

The final equilibrium temperature is 9.50022°C
Answer:
D
Explanation:
We know the formula for Work to be:
W = f * d
Where W is work done
f is force
d is the distance
A)
Work = 50
Distance = 50
So, Force is:
Force = 50/50 = 1
B)
Work = 400
Distance = 80
Force = 400/80 = 5
C)
Work = 365
Distance = 73
Force = 365/73 = 5
D)
Work = 144
Distance = 16
Force = 144/16 = 9
Hence, D is the situation in which the force applied is the greatest.
Answer:
Also, gases like air are easily compressed. The weight of all the air above a given point in the atmosphere squeezes air molecules closer together. This causes the density to increase. The more air above a level (and hence the more weight of air above a level), the greater the compression.
Step By Step Explanation:
Answer:
Density of liquid = 4730 kg/m³
Atmospheric pressure on planet X = 8401.7 N/m²
Explanation:
Pressure, P = ρgh where ρ = density of liquid, g =9.8 m/s² and h = height of column at earth's surface = 2185 mm. Since P = atmospheric pressure, for mercury, P = ρ₁gh₁ where ρ₁ = 13.6 g/cm³ and h₁ = 760 mm
So, ρgh = ρ₁gh₁
ρ = ρ₁h₁/h = 13.6 g/cm³ × 760/2185 = 4.73 g/cm³ = 4730 kg/m³
The atmospheric pressure on planet X
P = ρg₁h₃ g₁ = g/4 and h₃ = 725 mm = 0.725 m
on planet X
P = ρg₁h₃ = (4730 kg/m³ × 9.8 m/s² × 0.725 m)/4 = 8401.7 N/m²