Answer:
303.29N and 1.44m/s^2
Explanation:
Make sure to label each vector with none, mg, fk, a, FN or T
Given
Mass m = 68.0 kg
Angle θ = 15.0°
g = 9.8m/s^2
Coefficient of static friction μs = 0.50
Coefficient of kinetic friction μk =0.35
Solution
Vertically
N = mg - Fsinθ
Horizontally
Fs = F cos θ
μsN = Fcos θ
μs( mg- Fsinθ) = Fcos θ
μsmg - μsFsinθ = Fcos θ
μsmg = Fcos θ + μsFsinθ
F = μsmg/ cos θ + μs sinθ
F = 0.5×68×9.8/cos 15×0.5×sin15
F = 332.2/0.9659+0.5×0.2588
F =332.2/1.0953
F = 303.29N
Fnet = F - Fk
ma = F - μkN
a = F - μk( mg - Fsinθ)
a = 303.29 - 0.35(68.0 * 9.8- 303.29*sin15)/68.0
303.29-0.35( 666.4 - 303.29*0.2588)/68.0
303.29-0.35(666.4-78.491)/68.0
303.29-0.35(587.90)/68.0
(303.29-205.45)/68.0
97.83/68.0
a = 1.438m/s^2
a = 1.44m/s^2
Answer:
<em> think 2 also if not im so sorry but i think it is :)</em>
Answer:
a) T = 608.22 N
b) T = 608.22 N
c) T = 682.62 N
d) T = 533.82 N
Explanation:
Given that the mass of gymnast is m = 62.0 kg
Acceleration due to gravity is g = 9.81 m/s²
Thus; The weight of the gymnast is acting downwards and tension in the string acting upwards.
So;
To calculate the tension T in the rope if the gymnast hangs motionless on the rope; we have;
T = mg
= (62.0 kg)(9.81 m/s²)
= 608.22 N
When the gymnast climbs the rope at a constant rate tension in the string is
= (62.0 kg)(9.81 m/s²)
= 608.22 N
When the gymnast climbs up the rope with an upward acceleration of magnitude
a = 1.2 m/s²
the tension in the string is T - mg = ma (Since acceleration a is upwards)
T = ma + mg
= m (a + g )
= (62.0 kg)(9.81 m/s² + 1.2 m/s²)
= (62.0 kg) (11.01 m/s²)
= 682.62 N
When the gymnast climbs up the rope with an downward acceleration of magnitude
a = 1.2 m/s² the tension in the string is mg - T = ma (Since acceleration a is downwards)
T = mg - ma
= m (g - a )
= (62.0 kg)(9.81 m/s² - 1.2 m/s²)
= (62.0 kg)(8.61 m/s²)
= 533.82 N
Answer:
Explanation:
The football players collide in a completely inelastic collision, in other words they have the same velocity after the collision, this velocity has a magnitude V=1.6m/s.
We need to use the conservation of momentum Law, the total momentum is the same before and after the collision, at the initial point the receiver does not have any speed
(1)
We solve in order to find the receiver mass:
Answer:
Impulse = 1000 Ns
Explanation:
Given the following data;
Force of collision = 1000 kg•m/s.
Time = 1 seconds
To find the impulse;
Mathematically, the impulse experienced by an object or body is given by the formula;
Impulse = force * time
Substituting into the formula, we have;
Impulse = 1000 * 1
Impulse = 1000 Ns