1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sleet_krkn [62]
3 years ago
8

Charge is flowing through a conductor at the rate of 420 C/min. If 742 J. of electrical energy are converted to heat in 30 s., w

hat is the potential drop across the conductor?
Physics
1 answer:
Y_Kistochka [10]3 years ago
4 0

Answer:

3.53 V

Explanation:

Electric charge: The is the rate of flow of electric charge along a conductor.

The S.I unit of electric charge is C.

Mathematically it is expressed as,

Q = It ............................ Equation 1

Where Q = electric charge, I = current, t = time.

I = Q/t.......................... Equation 2

From the question, charge flows through the conductor at the rate of 420 C/mim

Which means in 1 min, 420 C of charge flows through the conductor.

Hence,

Q = 420 C, t = 1 min = 60 seconds

Substitute into equation 2

I = 420/60

I =7 A

Also

P = VI......................... Equation 3

Where P = power, V = potential drop, I = current.

V = P/I................... Equation 4

Note: Power = Energy/time

From the question, P = 742/30 = 24.733 W. and I = 7 A.

Substitute these values into equation 4

V = 24.733/7

V = 3.53 V

Hence the potential drop across the conductor =  3.53 V

You might be interested in
Define Velocity with an example​
kolbaska11 [484]

Velocity stands for Displacement w.r.t time

\\ \bull\tt\longmapsto Velocity=\dfrac{Displacement}{Time}

Or

\\ \bull\tt\longmapsto v=\dfrac{ds}{dt}

  • It has units m/s.
8 0
3 years ago
Read 2 more answers
What is the order of magnitude of the gravitational force between two 1.0 kilogram charges that are positioned 1.0 meter apart?
wariber [46]
I have the sender immediately notify me about this one and only the one you are interested please send us your requirements with you on this site for a few months ago but have not heard back yet over to you as soon and will have to get a new one is the same as last time I have to do it is not an intended solely those are the best way for me to get a good day.
5 0
3 years ago
A ball is launched from ground level at 20 m/s at an angle of 40° above the
DedPeter [7]

(a) The ball's height <em>y</em> at time <em>t</em> is given by

<em>y</em> = (20 m/s) sin(40º) <em>t</em> - 1/2 <em>g t</em> ²

where <em>g</em> = 9.80 m/s² is the magnitude of the acceleration due to gravity. Solve <em>y</em> = 0 for <em>t</em> :

0 = (20 m/s) sin(40º) <em>t</em> - 1/2 <em>g t</em> ²

0 = <em>t</em> ((20 m/s) sin(40º) - 1/2 <em>g t</em> )

<em>t</em> = 0   or   (20 m/s) sin(40º) - 1/2 <em>g t</em> = 0

The first time refers to where the ball is initially launched, so we omit that solution.

(20 m/s) sin(40º) = 1/2 <em>g t</em>

<em>t</em> = (40 m/s) sin(40º) / <em>g</em>

<em>t</em> ≈ 2.6 s

(b) At its maximum height, the ball has zero vertical velocity. In the vertical direction, the ball is in free fall and only subject to the downward acceleration <em>g</em>. So

0² - ((20 m/s) sin(40º))² = 2 (-<em>g</em>) <em>y</em>

where <em>y</em> in this equation refers to the maximum height of the ball. Solve for <em>y</em> :

<em>y</em> = ((20 m/s) sin(40º))² / (2<em>g</em>)

<em>y</em> ≈ 8.4 m

8 0
3 years ago
38.4 mol of krypton is in a rigid box of volume 64 cm^3 and is initially at temperature 512.88°C. The gas then undergoes isobari
kolbaska11 [484]

Answer:

Final volumen first process V_{2} = 98,44 cm^{3}

Final Pressure second process P_{3} = 1,317 * 10^{10} Pa

Explanation:

Using the Ideal Gases Law yoy have for pressure:

P_{1} = \frac{n_{1} R T_{1} }{V_{1} }

where:

P is the pressure, in Pa

n is the nuber of moles of gas

R is the universal gas constant: 8,314 J/mol K

T is the temperature in Kelvin

V is the volumen in cubic meters

Given that the amount of material is constant in the process:

n_{1} = n_{2} = n

In an isobaric process the pressure is constant so:

P_{1} = P_{2}

\frac{n R T_{1} }{V_{1} } = \frac{n R T_{2} }{V_{2} }

\frac{T_{1} }{V_{1} } = \frac{T_{2} }{V_{2} }

V_{2} = \frac{T_{2} V_{1} }{T_{1} }

Replacing : T_{1} =786 K, T_{2} =1209 K, V_{1} = 64 cm^{3}

V_{2} = 98,44 cm^{3}

Replacing on the ideal gases formula the pressure at this piont is:

P_{2} = 3,92 * 10^{9} Pa

For Temperature the ideal gases formula is:

T = \frac{P V }{n R }

For the second process you have that T_{2} = T_{3}  So:

\frac{P_{2} V_{2} }{n R } = \frac{P_{3} V_{3} }{n R }

P_{2} V_{2}  = P_{3} V_{3}

P_{3} = \frac{P_{2} V_{2}}{V_{3}}

P_{3} = 1,317 * 10^{10} Pa

7 0
3 years ago
What are the scientific mesurments ordered from greatest to least
Sveta_85 [38]
Meters Micrometers centimeters millimeters
5 0
3 years ago
Other questions:
  • A hockey puck slides off the edge of a table with an initial velocity of 20 m/s. The height of the table above the ground is 2.0
    10·1 answer
  • A beam of light shining from water to air strikes the surface at an angle greater than 48° and produces total internal reflectio
    15·1 answer
  • A tennis ball is dropped from a height of 10.0 m. It rebounds off the floor and comes up to a height of only 4.00 m on its first
    8·1 answer
  • A balance accurate to one-hundredth of a gram measures the mass of a rock to be 56.10 grams. How many significant digits are in
    8·2 answers
  • Plants use sunlight as energy to convert carbon dioxide and water into glucose and oxygen. Which best describes the reaction?
    14·2 answers
  • A student is examining a bacterium under the microscope. The E. coli bacterial cell has a mass of m = 0.200 fg (where a femtogra
    13·1 answer
  • Which equation represents the total energy of a system
    6·1 answer
  • Help pls ... will give brainlist
    14·1 answer
  • The number 0.00325 × 10-8 cm can be expressed in millimeters as A) 3.25 × 10-11 mm. B) 3.25 × 10-10 mm. C) 3.25 × 10-12 mm. D) 3
    10·1 answer
  • A student mixed two clear liquids together in a beaker. A solid and a new liquid formed. The student forgot to write down the ma
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!