Answer:
-2.66 kJ
Explanation:
At constant pressure, work done is:
W = -P ΔV
W = -(95.000 Pa) (43 m² − 15 m²)
W = -2660 J
W = -2.66 kJ
Answer:
Option c
Explanation:
Soil tilth refers to the physical condition of the soil, particularly with regards to the suitability of the soil for the growth of crop.
The determinants of the tilth in the soil incorporates the arrangement and steadiness of aggregated particles of the soil, pace of water penetration, level of air circulation, dampness content and seepage.
Thus option C follows the definition of the soil tilth.
Answer:
Explanation:
25 mm diameter
r₁ = 12.5 x 10⁻³ m radius.
cross sectional area = a₁
Pressure P₁ = 100 x 10⁻³ x 13.6 x 9.8 Pa
a )
velocity of blood v₁ = .6 m /s
Cross sectional area at blockade = 3/4 a₁
Velocity at blockade area = v₂
As liquid is in-compressible
a₁v₁ = a₂v₂
a₁ x .6 m /s = 3/4 a₁ v₂
v₂ = .8m/s
b )
Applying Bernauli's theorem formula
P₁ + 1/2 ρv₁² = P₂ + 1/2 ρv₂²
100 x 10⁻³ x 13.6 x10³x 9.8 + 1/2 X 1060 x .6² = P₂ + 1/2x 1060 x .8²
13328 +190.8 = P₂ + 339.2
P₂ = 13179.6 Pa
= 13179 / 13.6 x 10³ x 9.8 m of Hg
P₂ = .09888 m of Hg
98.88 mm of Hg
Answer:
V(peak voltage) is the highest voltage that the waveform will ever attain and the Vrms(root-mean-square) is the effective voltage of the total waveform representing the AC source.
The magnitude of the force required to stop the weight in 0.333 seconds is 67.6 N.
<h3>
Magnitude of required force to stop the weight</h3>
The magnitude of the force required to stop the weight in 0.333 seconds is calculated by applying Newton's second law of motion as shown below;
F = ma
F = m(v/t)
F = (mv)/t
F = (5 x 4.5)/0.333
F = 67.6 N
Thus, the magnitude of the force required to stop the weight in 0.333 seconds is 67.6 N.
Learn more about force here: brainly.com/question/12970081
#SPJ1