At the player's maximum height, their velocity is 0. Recall that

which tells us the player's initial velocity
is

The player's height at time
is given by

so we find their airtime to be

Answer:
L/D= 112
Explanation:
Aerodynamics can be defined as the branch of dynamics which deals with the motion of air, their properties and the interaction between the air and solid bodies.
Aerodynamics law explains how an airplane is able to fly. There are four forces of flight, and they are; lift, weight, thrust and drag. The amount of lift generated by a wing divided by the aerodynamic drag is known as the lift to drag ratio.
Lift increases proportionally to the square of the speed.
The solutions to the question is the file attached to this explanation.
Lift,L= qC(l). S---------------------------(1).
and,
Drag,D = qC(d).S ----------------------(2).
Hence, Lift to drag ratio,L/D= C(l)/C(d).
Therefore, we have to compute various angle of attack.(check attached file)...
Then, (L/D) will then be equal to 112.
Sorry bro I just need points for my calculus exam
Answer:
the reflected wave is inverted and the transmitted wave is up
Explanation:
To answer this question we must analyze the physical phenomenon, with an wave reaching a discontinuity, we can analyze it as a shock.
Let's start when the discontinuity is with a fixed, very heavy and rigid obstacle, in this case the reflected wave is inverted, since the contact point cannot move
In the event that it collides with an object that can move, the reflected wave is not inverted, this is because the point can rise, they form a maximum at this point.
In the proposed case the shock is when the thickness changes, in this case we have the above phenomena, a part of the wave is reflected by being inverted and a part of the wave is transmitted without inverting.
The amplitude sum of the amplitudes of the two waves is proportional to the lanería that is distributed between them.
When checking the answers the correct one is the reflected wave is inverted and the transmitted wave is up