Answer:
The minimum stopping distance when the car is moving at
29.0 m/sec = 285.94 m
Explanation:
We know by equation of motion that,

Where, v= final velocity m/sec
u=initial velocity m/sec
a=Acceleration m/
s= Distance traveled before stop m
Case 1
u= 13 m/sec, v=0, s= 57.46 m, a=?

a = -1.47 m/
(a is negative since final velocity is less then initial velocity)
Case 2
u=29 m/sec, v=0, s= ?, a=-1.47 m/
(since same friction force is applied)

s = 285.94 m
Hence the minimum stopping distance when the car is moving at
29.0 m/sec = 285.94 m
The difference between the two is, well for one
Spectrum: The entire range that the "<em>waves" </em>could be such, as visible light, x-ray's and so on.
Waves: These are different because they aren't telling you or showing the entire spectrum just which they length that they are.
<em>It may confuse you but it makes sense to me (Sorry)</em>
Answer:
Spring's displacement, x = -0.04 meters.
Explanation:
Let the spring's displacement be x.
Given the following data;
Mass of each shrew, m = 2.0 g to kilograms = 2/1000 = 0.002 kg
Number of shrews, n = 49
Spring constant, k = 24 N/m
We know that acceleration due to gravity, g is equal to 9.8 m/s².
To find the spring's displacement;
At equilibrium position:
Fnet = Felastic + Fg = 0
But, Felastic = -kx
Total mass, Mt = nm
Fg = -Mt = -nmg
-kx -nmg = 0
Rearranging, we have;
kx = -nmg
Making x the subject of formula, we have;

Substituting into the formula, we have;


x = -0.04 m
Therefore, the spring's displacement is -0.04 meters.
Answer:
D. 2^(3/2)
Explanation:
Given that
T² = A³
Let the mean distance between the sun and planet Y be x
Therefore,
T(Y)² = x³
T(Y) = x^(3/2)
Let the mean distance between the sun and planet X be x/2
Therefore,
T(Y)² = (x/2)³
T(Y) = (x/2)^(3/2)
The factor of increase from planet X to planet Y is:
T(Y) / T(X) = x^(3/2) / (x/2)^(3/2)
T(Y) / T(X) = (2)^(3/2)
Start by using the addition as a sign and use multiplying