Ummm what does this even mean I need a picture to help u
Answer:
Mass of ice per second melt is 2.74×10^-5Kg/s
Explanation:
Temperature of one end of the copper rod is 100°C boiling point of water and the other end of the rod is 0°C
Temperature difference in the copper rod = 100 - 0 = 100°C
Cross sectional area = 3.6×10^-4m^2
Length of rod , L = 1.7m
Amount of heat transfer from the boiling water to the ice water mix through the copper rod is given by:
Q = KA◇T/ L
Q = (390×(3.6×10^-4)×100°C)/1.7
Q = 14.04/1.7
Q = 8.26J/s
From the equation
Q = mLf
m = Q/ Lf
Where Lf = Latent heat of fusion for water= 3.34×10^5J/Kg
m = 8.26/(3.34×10^5)
m = 2.74×10^-5Kg/s
Answer:
d) Wind
Explanation:
Secondary energy is energy produced by converting energy available in its natural state in the environment. Hence Wind is a primary source not a secondary source
You really can't tell.
Power = I^2 × R = V^2 / R ( unit in Watt)
For P = I^2 × R
Where we have P directly proportional to R, increase in Power leads to increase in R
So if we have 100 will have higher resistance
For P = V^2/R
Power is inversely proportional to resistance.
So increase in Power leads to decrease in resistance.
60 watt will have a higher resistance.
By the work-energy theorem, the total work done on the mass by the spring is equal to the change in the mass's kinetic energy:
<em>W</em> = ∆<em>K</em>
and the work done by a spring with constant <em>k</em> as it gets compressed a distance <em>x</em> is -1/2 <em>kx</em> ²; the work it does is negative because the restoring force of the spring points opposite the direction in which it's getting compressed.
So we have
-1/2 <em>k</em> (0.15 m)² = 0 - 1/2 (2.0 kg) (3.0 m/s)²
Solve for <em>k</em> to get <em>k</em> = 800 N/m.