Answer:
165.529454
Explanation:
According to the Pythagorean Theorem for calculating the lengths of a right angle triangle's sides, a^2 + b+2 = c^2, where c is the longest side (and the side opposing the right angle). So in your case it would be 150*150 + 70*70 = 27400. And √ 27400 is your answer.
Answer:
1.36 x 10^-3 cm
Explanation:
Area = 50 ft^2 = 46451.5 cm^2
mass = 6 oz = 170.097 g
density = 2.70 g/cm^3
Let t be the thickness of foil in cm.
mass = volume x density
mass = area x thickness x density
170.097 = 46451.5 x t x 2.70
t = 1.36 x 10^-3 cm
Thus, the thickness of aluminium foil is 1.36 x 10^-3 cm.
Answer:
It is used in MRI because it does not damage cells
Radio waves are used for space research because they have very long wavelengths
Explanation:
Many parts of the electromagnetic spectrum are applied in clinical diagnosis and treatment of illnesses. However, these highly ionizing radiation damage cells and its dosage must be carefully managed to avoid creating radiation related health problems for the patients.
Radio waves can be used in MRI without issues because the energy of the radiation is not sufficient to cause damage to cells but is sufficient to provide images for the sake of medical diagnosis.
Secondly, radio waves have long wavelength. This property is suitable for long range
communication. Hence it can be used in space research
For purposes of completing our calculations, we're going to assume that
the experiment takes place on or near the surface of the Earth.
The acceleration of gravity on Earth is about 9.8 m/s², directed toward the
center of the planet. That means that the downward speed of a falling object
increases by 9.8 m/s for every second that it falls.
3 seconds after being dropped, a stone is falling at (3 x 9.8) = 29.4 m/s.
That's the vertical component of its velocity. The horizontal component is
the same as it was at the instant of the drop, provided there is no horizontal
force on the stone during its fall.