Answer:
a) 14 Ω
b) 2.0 A
c) 28 V
Explanation:
a) The total resistance of resistors in series is the sum:
R = R₁ + R₂
R = 8.0 Ω + 6.0 Ω
R = 14 Ω
b) The current in the 6.0 Ω resistor can be found with Ohm's law:
V = IR
12 V = I (6.0 Ω)
I = 2.0 A
c) Since the resistors are in series, they have the same current. So the total voltage is:
V = IR
V = (2.0 A) (14 Ω)
V = 28 V
Answer:
h= 46.66 m
Explanation:
Given that
Initial speed of the car ,u = 110 km/h
We know that
1 km/h= 0.277 m/s
u= 30.55 m/s
lets height gain by car is h.
The final speed of the car will be zero at height h.
v²=u²- 2 g h
v= 0 m/s
0²=30.55²- 2 x 10 x h ( g = 10 m/s²)
h= 46.66 m
The negative sign on the acceleration is only a vector quantity that means the object is accelerating to the left. Hence, we can only focus on it magnitude which is 4 m/s^2. Acceleration is the change in velocity over time. The change in velocity must be 24 m/s - 0 m/s, if you want the object to stop. Therefore,
a = (v2 - v1)/t
4 = (24 - 0)t
t = 6 seconds
The object will stop after 6 seconds.
Answer:
Here's what I got:
Let's assume that N and E are + directions while S and W are - directions.
Wind is blowing from SW; thus, it is blowing towards NE (or at 45 deg N of E).
Dividing the wind's speed into components:y-component: +70.71 km/h; x-component: +70.71 km/h
Dividing the airplane's speed into components:y-component: -600 km/h; x-component: 0 km/h
Adding the components to get the resulting components:y-component: -529.29 km/h; x-component: +70.71
Using the Pythagorean Theorem to find the resulting speed:v^2 = y^2 + x^2 so v = 533.99 km/h
To find the angle of direction, use arctan (y/x):arctan (529.29/70.71) = 82.39 deg
ANSWER: velocity = 533.99 km/h at 82.39 deg S of E
Explanation: