Answer:
False
Explanation:
My first response got deleted by brainly so here, again
Answer:
∴ΔH₂ = - 12,258 KJ
Explanation:
Enthalpy:
Enthalpy is a property of a thermodynamic system. Enthalpy of a system is equal to the sum of internal energy of the system and presser times volume of the system.
The heat absorbes or releases in a closed system is the change of enthalpy of the system.
Given reactions are:
Reaction 1: C₃H₈(g)+5O₂(g)→ 3CO₂(g)+4H₂O, ΔH₁= - 2043 KJ
Reaction 2: 6C₃H₈(g)+30 O₂(g)→ 18 CO₂(g)+24 H₂O, ΔH₂=?
Take a look at reaction 1 and reaction 2, the only difference is that 1 molecule of C₃H₈ is combusted in reaction 1 and 6 molecules of C₃H₈ is combusted in reaction 2.
We can think the reaction 2 as occurring 6 different container and each containers contains 1 molecule of C₃H₈. The enthalpy is an extensive property. Total enthapy of the 6 containers is = 6×(-2043 KJ)
= - 12,258 KJ
∴ΔH₂ = - 12,258 KJ
Balanced chemical reaction: A + 5C ⇄ AC₅.
<span>[A] = 0.100 M; equilibrium concentration.
</span><span>[C] = 0.0380 M.
</span>[AC₅] = 0.100 M.
Kf = [AC₅] / ([A] · [C]⁵).
Kf = 0.100 M ÷ (0.100 M · (0.0380 M)⁵.
Kf = 12620658.54 = 1,26·10⁷.
<span>The formation constant can be calculated when </span>chemical equilibrium is reached, when the forward reaction rate is equal to the reverse reaction rate.
Answer:
Second Law
Explanation:
Newton's second law states that the acceleration caused in a body is directly proportional to the force applied and inversely proportion to the mass of the body.
This is given by :

In this case the suggestion given to reduce the aircraft's cargo load is the right move as reducing the load on the aircraft will decrease the mass of the whole aircraft. This in turn will help the aircraft to accelerate more as acceleration inversely varies with mass. Thus the aircraft will be able to reach its flying speed even on a short run way.
Hence, Newton's second law is applied.