Answer:The highest possible efficiency of this heat engine is 11%
Explanation:
Saturated water temperature at P1, Pressure in Heat addition,
1.1 MPa=185°C +273= 458K
Saturated water temperature at P2, Pressure in Heat rejection,
0.3MPa=133.5°C+ 273=406.5K
The highest possible efficiency of any heat engine is the Carnot efficiency given as
Carnot efficiency, ηmax = 1- (T2/ T1)
1- (406.5K/458K)
1-0.88755=0.112
=11%
Due that the velocity is constant that means that friction force is equal to the force exert by you, otherwise the refrigerator will accelerate or decelerate and in both cases velocity will not be constant.
So then the friction force between refrigerator and floor is 150 Newtons.
Answer:
C) 24.4°
Explanation:
let nd = 2.419 be the index of refraction of diamond and na = 1.0 be the index of refraction of air and ∅c be the critical angle.
according to Snell's Law:
sin(∅c) = na/nd
sin(∅c) = (1.0)/(2.419)
∅c = 24.4°
Answer:
Explanation:
Since the block is at rest in an elevated position, we can assume that it only has potential energy.
U=mgh is the formula for potential energy where U=potential energy, m= mass, g=acceleration due to gravity, and h=height.
Plug in known variables....
U=4kg*9.8m/s^2*20m
U=784 joules of potential energy or letter A.
Answer:
the final velocity of the car is 59.33 m/s [N]
Explanation:
Given;
acceleration of the car, a = 13 m/s²
initial velocity of the car, u = 120 km/h = 33.33 m/s
duration of the car motion, t = 2 s
The final velocity of the car in the same direction is calculated as follows;
v = u + at
where;
v is the final velocity of the car
v = 33.33 + 13 x 2
v = 59.33 m/s [N]
Therefore, the final velocity of the car is 59.33 m/s [N]