Momentum = mass • velocity
v= 17.5/2.5
= 7 m/s
Answer:
Magnitude of the average force exerted on the wall by the ball is 800N
Explanation:
Given
Contact Time = t = 0.05 seconds
Mass (of ball) = 0.80kg
Initial Velocity = u = 25m/s
Final Velocity = 25m/s
Magnitude of the average force exerted on the wall by the ball is given by;
F = ma
Where m = 0.8kg
a = Average Acceleration
a = (u + v)/t
a = (25 + 25)/0.05
a = 50/0.05
a = 1000m/s²
Average Force = Mass * Average Acceleration
Average Force = 0.8kg * 1000m/s²
Average Force = 800kgm/s²
Average Force = 800N
Hence, the magnitude of the average force exerted on the wall by the ball is 800N
Energy transfer the energy from the tuning fork is being transferred to the guitar<span />
Answer:
0.010 m
Explanation:
So the equation for a pendulum period is:
where L is the length of the pendulum. In this case I'll use the approximation of pi as 3.14, and g=9.8 m\s. So given that it oscillates once every 1.99 seconds. you have the equation:

Evaluate the multiplication in front

Divide both sides by 6.28

Square both sides

Multiply both sides by m/s^2 (the s^2 will cancel out)
Now now let's find the length when it's two seconds

Divide both sides by 6.28

Square both sides

Multiply both sides by 9.8 m/s^2 (s^2 will cancel out)

So to find the difference you simply subtract
0.984 - 0.994 = 0.010 m
Answer:
4.5 metres
Explanation:
Using Hooke's Law (
)
We need to find the spring constant of the bungee cord with the given extension and force, we can do this by substituting in known values.

Now we have found the spring constant of the bungee cord, we can substitute it in for the a different force. As the cord is the same we can use the same spring constant.
