To solve the problem, we
must know the heat capacity of ice and water.
For Cp = 2090 J/kg C
H = mCpT
H = (10 kg) ( 2090 J/ Kg C)
( -23 C)
H = - 480700 J
For water Cp = 4180 j/kg C
H = (100 kg) ( 4180 J/kg C)
( 60 C)
<span>H = 2508000 J</span>
Answer:
Density = 1.1839 kg/m³
Mass = 227.3088 kg
Specific Gravity = 0.00118746 kg/m³
Explanation:
Room dimensions are 4 m, 6 m & 8 m. Thus, volume = 4 × 6 × 8 = 192 m³
Now, from tables, density of air at 25°C is 1.1839 kg/m³
Now formula for density is;
ρ = mass(m)/volume(v)
Plugging in the relevant values to give;
1.1839 = m/192
m = 227.3088 kg
Formula for specific gravity of air is;
S.G_air = density of air/density of water
From tables, density of water at 25°C is 997 kg/m³
S.G_air = 1.1839/997 = 0.00118746 kg/m³
It’s like the force put against something or someone✨
Answer:
Explanation:
Given
Speed of block at bottom is 
Distance traveled 
initial velocity is zero
using equation of motion

where v=final velocity
u=initial velocity
a=acceleration
s=displacement


when it is 3 m from top then


Answer:
V₀y = 0 m/s
t = 2.47 s
V₀ₓ = 61.86 m/s
Vₓ = 61.86 m/s
Explanation:
Since, the ball is hit horizontally, there is no vertical component of velocity at initial point. So, the initial vertical velocity (V₀y) will beL
<u>V₀y = 0 m/s</u>
For the initial vertical velocity of golf ball we consider the vertical motion and apply 2nd equation of motion:
Y = V₀y*t + (0.5)gt²
where,
Y = Height = 30 m
g = 9.8 m/s²
t = time to hit the ground = ?
Therefore,
30 m = (0 m/s)(t) + (0.5)(9.8 m/s²)t²
t² = 30 m/4.9 m/s²
t = √6.122 s²
<u>t = 2.47 s</u>
For initial vertical velocity we analyze the horizontal motion of the ball. We neglect the frictional effects in horizontal motion thus the speed remains uniform. Hence,
V₀ₓ = Xt
where,
V₀ₓ = Initial vertical Velocity = ?
X = Horizontal Distance = 25 m
Therefore,
V₀ₓ = (25 m)(2.47 s)
<u>V₀ₓ = 61.86 m/s</u>
<u></u>
Due, to uniform motion in horizontal direction:
Final Vertical Velocity = Vₓ = V₀ₓ
Vₓ = 61.86 m/s