Moon, earth, sun solar system, galaxy, universe
Given:
F = ax
where
x = distance by which the rubber band is stretched
a = constant
The work done in stretching the rubber band from x = 0 to x = L is
![W=\int_{0}^{L} Fdx = \int_{0}^{L}ax \, dx = \frac{a}{2} [x^{2} ]_{0}^{L} = \frac{aL^{2}}{2}](https://tex.z-dn.net/?f=W%3D%5Cint_%7B0%7D%5E%7BL%7D%20Fdx%20%3D%20%5Cint_%7B0%7D%5E%7BL%7Dax%20%5C%2C%20dx%20%3D%20%5Cfrac%7Ba%7D%7B2%7D%20%20%5Bx%5E%7B2%7D%20%5D_%7B0%7D%5E%7BL%7D%20%3D%20%20%5Cfrac%7BaL%5E%7B2%7D%7D%7B2%7D%20)
Answer:
Answer:
<em>The equivalent resistance of the combination is R/100</em>
Explanation:
<u>Electric Resistance</u>
The electric resistance of a wire is directly proportional to its length. If a wire of resistance R is cut into 10 equal parts, then each part has a resistance of R/10.
Parallel connection of resistances: If R1, R2, R3,...., Rn are connected in parallel, the equivalent resistance is calculated as follows:

If we have 10 wires of resistance R/10 each and connect them in parallel, the equivalent resistance is:

This sum is repeated 10 times. Operating each term:

All the terms have the same denominator, thus:

Taking the reciprocals:

The equivalent resistance of the combination is R/100
Answer;
By using kepler's 3rd law we find that;
-A year on Earth is shorter than a year on Saturn.
Explanation;
-Kepler’s 3rd law states that the square of a planet’s orbital period is proportional to the cube of its average distance from the Sun (semi-major axis), which tells us that more distant planets move more slowly in their orbits.
-In other words, if you square the 'year' of each planet, and divide it by the cube of its distance to the Sun, you get the same number, for all planets. The law captures the relationship between the distance of planets from the Sun, and their orbital periods.
Answer:
A) Magma emplacement
Explanation:
Sedimentary structures forms during deposition of sediments. It can also form after sediments have been deposited. Sedimentary structures can only be found in sedimentary rocks. Some examples include mud cracks, ripple marks, cross stratification, potholes, etc
Magma emplacement is an igneous process which describes the different mechanisms by which magma can be emplaced. It is only typical of igneous rocks.