Answer: The bug will remain motionless
Explanation:
According to Newton's first Law of Motion (sometimes called Law of Inertia):
<em>An object at rest or describing a uniform straight line motion (moving at constant velocity), will remain at rest or moving unless an external force is applied to it and changes its state of rest or motion.
</em>
In other words:
An object or body will keep its state of motion until an external force changes its state
This means that objects tend to remain in its state of motion, and is the definition of the inertia, as well.
In addition, according to his law, an object in rest can be in equilibrium (net force equals to zero), and a moving object can also be in equilibrium, as long as it keeps a constant velocity.
<h2>
This is why the bug, which is at rest will remain at rest, although the ants are simultaneously pulling it in different directions, since the resultant of all these forces is zero.</h2>
The speed of an object can be determined from the distance vs time graph.
You know that speed = distance/time
in the graph, distance/time = slope of the curve.
So SPEED IS GIVEN BY THE SLOPE of the curve in the graph.
● If the distance vs time curve is a straight line, parallel to time axis(x-axis), slope is 0. That means speed is 0. So the object is at rest.
● If the distance vs time curve is a straight line, with some non-zero slope; That means speed is nonzero and constant. So the object is in uniform motion.
● If the distance vs time curve is a curved, the slope is changing. That means speed is changing. So the object is in an accelerated motion.
Answer:
2.83 m
Explanation:
The relationship between frequency and wavelength for an electromagnetic wave is given by

where
is the wavelength
is the speed of light
is the frequency
For the FM radio waves in this problem, we have:
is the minimum frequency, so the maximum wavelength is

The maximum frequency is instead

Therefore, the minimum wavelength is

So, the wavelength at the beginning of the range is 2.83 m.
Answer:
A reference frame is that frame to which the qualities of an object are related:
For instance - an object may described by - mass, speed, acceleration, size, etc,
It is important to remember that Newton's Laws of motion do not hold in accelerated reference frames -
Einstein's laws of special relativity are only true in frames that move with contant speed to one another
Acceleration = velocity/ time
Acceleration = 0.7-0.3 /30= 0.01 m/s^2
Notice that velocity is calculated the final speed minus the initial !