To solve the problem it is necessary to apply the concepts given in the kinematic equations of angular motion that include force, acceleration and work.
Torque in a body is defined as,

And in angular movement like

Where,
F= Force
d= Distance
I = Inertia
Acceleration Angular
PART A) For the given case we have the torque we have it in component mode, so the component in the X axis is the net for the calculation.

On the other hand we have the speed data expressed in RPM, as well


Acceleration can be calculated by



In the case of Inertia we know that it is equivalent to


Matching the two types of torque we have to,




PART B) The work performed would be calculated from the relationship between angular velocity and moment of inertia, that is,



The explanation for the following answer is explained below.
Explanation:
The sun is at an average distance of about 93,000,000 miles(150 million kilometers) away from the earth.It is so far away that light from the Sun,travelling at a speed of 186,000 miles (300,000 kilometers) per second, takes about 8 minutes to reach the earth.Earth does not travel around the Sun in a perfect circle.Instead its orbit is elliptical,like a stretched circle,with the sun just off the center of the orbit. At its closest,the Sun is 91.4 million miles (147.1 million kilometers ) away us.At its farthest ,the Sun is 94.5 million miles (152.1 million km) away.The Earth is closest to the Sun during winter in the northern hemisphere
To solve this problem it is necessary to apply the concepts related to frequency and vibration of strings. Mathematically the frequency can be expressed as

Then the relation between two different frequencies with same wavelength would be


The beat frequency heard when the two strings are sounded simultaneously is



We have the velocity of the transverse waves in stretched string as


And,

Therefore the relation between the two is,


Finally substituting this value at the frequency beat equation we have


Therefore the beats per second are 11.92Hz
We can solve the problem by using the first law of thermodynamics:

where
is the variation of internal energy of the system
Q is the heat added to the system
W is the work done by the system
In this problem, the variation of internal energy of the system is

While the heat added to the system is

therefore, the work done by the system is

The net force required to accelerate a car is 6000 N.
Force is defined as the product of the mass and acceleration of the body. Force is used to changing the velocity that is to accelerate an object or a body of a particular mass. The unit of Force is Newton or kg m/s^2.
The formula used to calculate the net force is :
F = ma
where, F = Force
m = mass = 2000 kg
a = acceleration = 3.00 m/s^2
∴ F = 2000*3
F = 6000 N
Thus, to accelerate the car at 3.00 m/s^2 of mass 2000 kg net force required is 6000 N.
To learn more about force,
brainly.com/question/1046166