Answer:
CuSO4
Explanation:
Na2S + CuSO4 → Na2SO4 + CuS
The reaction is balanced (same number of elements in each side)
To determine limiting reagent you need to know the moles you have of each.
Molar mass Na2S = 23 * 2 + 32 = 78
Molar mass CuSO4 = 63.5 + 32 + 16 * 4 = 159.5
Na2S mole = 15.5 / 78 = 0.2
CuSO4 mole = 12.1/159.5 = 0.076
*Remember mole = mass / MM
With that information now you have to divide each moles by its respective stoichiometric coefficient
Na2S stoichiometric coefficient : 1
Na2S : 0.2 / 1 = 0.2
CuSO4 stoichiometric coefficient: 1
CuSO4: 0.076 / 1 = 0.076
The smaller number between them its the limiting reagent, CuSO4
Use the Heat formula for both problems.
q=m*c*∆t
Where
q= heat in Joules
m= mass in grams
c= specific heat which is a constant 4.18
∆t= change in temperature
The major carbon sources (reservoirs that release more carbon than absorbed) are: deforestation and fossil fuels
The major carbon sinks (reservoirs that absorb more carbon than released) are:
soil, oceans and plants.
When scientists calculate the amount of carbon dioxide is returned to the atmosphere vs the released the amount of carbon, a large amount is unaccounted for and the total does not add up. This is why scientists believe there is an undiscovered carbon sink somewhere.
Answer:

Explanation:
If we want to convert from grams to moles, the molar mass is used. This is the mass of 1 mole. They are found on the Periodic Table as the atomic masses, but the units are grams per mole (g/mol) instead of atomic mass units (amu).
Look up the molar mass of carbon.
Set up a ratio using the molar mass.

Since we are converting 3.06 grams to moles, we multiply by that value.

Flip the ratio. This way, the ratio is still equivalent, but the units of grams of carbon cancel.

The original measurement of grams (3.06) has 3 significant figures, so our answer must have the same. For the number we calculated, that is the thousandth place.
The 7 in the ten-thousandth place tells us to round the 4 up to a 5.

3.06 grams of carbon is approximately <u>0.255 moles of carbon.</u>
The Geiger Counter. Geiger counters are used to detect radioactive emissions, most commonly beta particles and gamma rays. The counter consists of a tube filled with an inert gas that becomes conductive of electricity when it is impacted by a high-energy particle.
Hope That Helps!!!
NOTE:Mark as BRAINLIEST!!!!!