The displacement of Edward in the westerly direction is determined as 338.32 km.
<h3>What is displacement of Edward?</h3>
The displacement of Edward can be determined from different methods of vector addition. The method applied here is triangular method.
The angle between the 200 km north west and 150 km west = 60 + 90 = 150⁰
The displacement is the side of the triangle facing 150⁰ = R
R² = a² + b² - 2abcosR
R² = 150² + 200² - (2x 150 x 200)xcos(150)
R² = 62,500 - (-51,961.52)
R² = 114,461.52
R = 338.32 km
Learn more about displacement here: brainly.com/question/321442
#SPJ1
Answer:
No, neutrons have about the same mass as a proton, but both have more mass than electrons.
Hope this helps a bit,
Flips
The solution would be like
this for this specific problem:
<span>
The force on m is:</span>
<span>
GMm / x^2 + Gm(2m) / L^2 = 2[Gm (2m) / L^2] ->
1
The force on 2m is:</span>
<span>
GM(2m) / (L - x)^2 + Gm(2m) / L^2 = 2[Gm (2m) / L^2]
-> 2
From (1), you’ll get M = 2mx^2 / L^2 and from
(2) you get M = m(L - x)^2 / L^2
Since the Ms are the same, then
2mx^2 / L^2 = m(L - x)^2 / L^2
2x^2 = (L - x)^2
xsqrt2 = L - x
x(1 + sqrt2) = L
x = L / (sqrt2 + 1) From here, we rationalize.
x = L(sqrt2 - 1) / (sqrt2 + 1)(sqrt2 - 1)
x = L(sqrt2 - 1) / (2 - 1)
x = L(sqrt2 - 1) </span>
= 0.414L
<span>Therefore, the third particle should be located the 0.414L x
axis so that the magnitude of the gravitational force on both particle 1 and
particle 2 doubles.</span>
Heat your answer is Heat.
Hoped I helped.