Well a mixture is less permanent and also it can be easily taken aprt where a compound does the opposite of those things.
Hope I helped :)
Answer:
edfgkvisiaixiicciciviicsiaiaqwododc
Answer:
a) 
b) 
Explanation:
Equation of reaction:

Initial pressure 3 1 0
Pressure change 2P 1P 2P
Total pressure = (3-2P) + (1-P) + (2P)
Total Pressure = 3.75 atm
(3-2P) + (1-P) + (2P) = 3.75
4 - P = 3.75
P = 4 - 3.75
P = 0.25 atm
Let us calculate the pressure of each of the components of the reaction:
Pressure of XO2 = 3 - 2P = 3 - 2(0.25)
Pressure of XO2 =2.5 atm
Pressure of O2 = 1 - P = 1 -0.25
Pressure of O2 = 0.75 atm
Pressure of XO3 = 2P = 2 * 0.25
Pressure of XO3 = 0.5 atm
From the reaction, equilibrium constant can be calculated using the formula:
![K_{p} = \frac{[PXO_{3}] ^{2} }{[PXO_{2}] ^{2}[PO_{2}] }](https://tex.z-dn.net/?f=K_%7Bp%7D%20%3D%20%5Cfrac%7B%5BPXO_%7B3%7D%5D%20%5E%7B2%7D%20%7D%7B%5BPXO_%7B2%7D%5D%20%5E%7B2%7D%5BPO_%7B2%7D%5D%20%7D)

Standard free energy:

b) value of k−1 at 27 °C, i.e. 300K



Considering the ideal gas law, a sample weighing 9.49 g occupies 68.67 L at 353 K and 2.00 atm.
Ideal gases are a simplification of real gases that is done to study them more easily. It is considered to be formed by point particles, do not interact with each other and move randomly. It is also considered that the molecules of an ideal gas, in themselves, do not occupy any volume.
An ideal gas is characterized by three state variables: absolute pressure (P), volume (V), and absolute temperature (T). The relationship between them constitutes the ideal gas law, an equation that relates the three variables if the amount of substance, number of moles n, remains constant and where R is the molar constant of the gases:
P× V = n× R× T
In this case, you know:
- P= 2 atm
- V= ?
- n=
being 2g/mole the molar mass of H2, that is, the amount of mass that a substance contains in one mole. - R= 0.082

- T= 353 K
Replacing:
2 atm× V = 4.745 moles× 0.082
× 353 K
Solving:
V = (4.745 moles× 0.082
× 353 K)÷ 2 atm
<u><em>V= 68.67 L</em></u>
Finally, a sample weighing 9.49 g occupies 68.67 L at 353 K and 2.00 atm.
Learn more: